

Stéphanie Juneau

stephanie.juneau@cea.fr
CEA Saclay
(coordinator of AGN WP in GAWG)

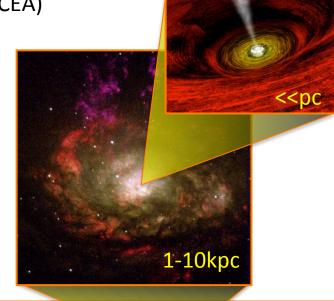
Mara Salvato

MPE-Garching (coordinator of AGN WP in OU-PHZ)

WP9: Active Galactic Nuclei

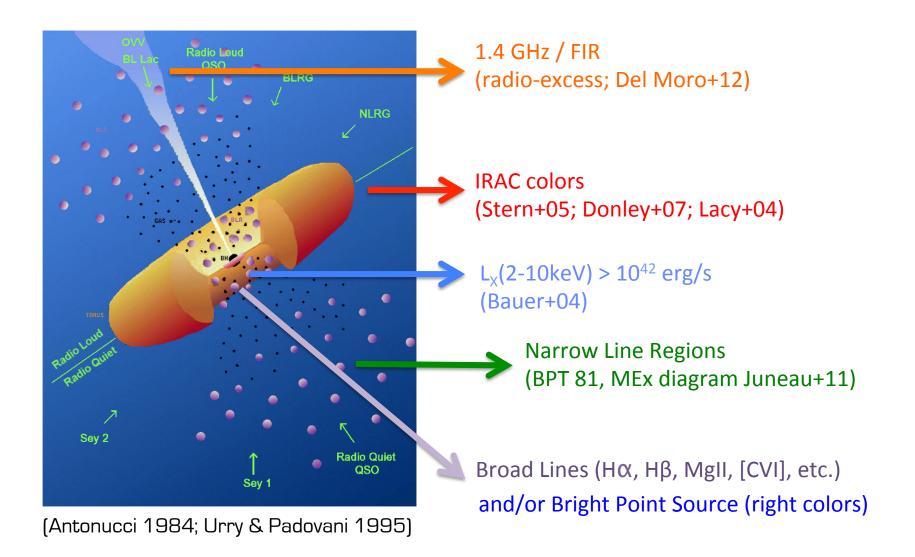
Coordinator: Stéphanie Juneau (CEA)

AGN identification

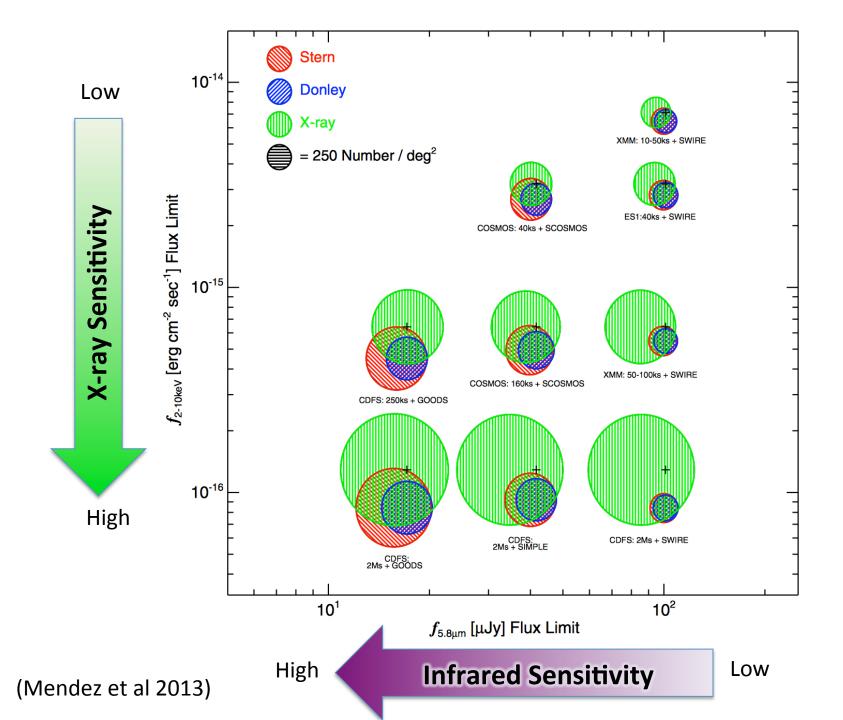

→ AGN Database useable by all other WPs

AGN studies:

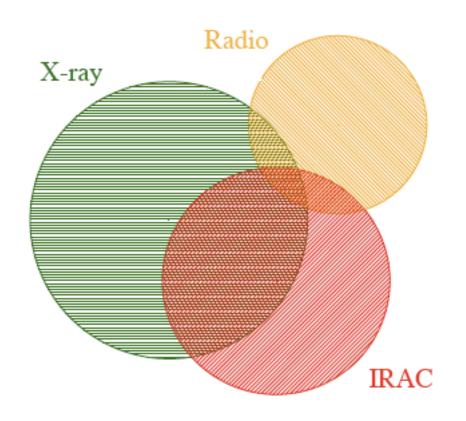
- AGN triggering/feedback
- AGN obscuration
- BH masses, BH growth budget
- Connection with host galaxies
- Connection with environment


Probe of luminous objects with more sensitivity than current all-sky AGN surveys (+ get host galaxy properties!)

Improved understanding of the Black-Hole – Galaxy connection during the peak epoch of activity (z~2)


Galaxy connection during

AGN Unification Model



AGN Identification: Pros & Cons

Regime	Advantages	Limitations
Radio (e.g., 1.4 GHz / FIR)	 Dust insensitive Can get high resolution in some systems (VLBI) 	Radio loudness is rare (and not fully understood?)Limited sensitivity
Mid-IR (IRAC or WISE colors)	 Both obscured and unobscured AGNs All sky with WISE (rare populations) 	 Limited sensitivity (L_X>10⁴³ erg/s) Need contrast with SF in host
Optical (Colors or emission lines [BPT, MEx, etc.])	 Most sensitive (L_X<10⁴¹erg/s) Can detect Compton-thick AGNs (geometry) 	 Dust obscuration from host/ Optical elusive cases Spectroscopy is expensive
X-rays (luminosity or excess)	 Reliable tracer (>2keV) Intermediate sensitivity (better than mid-IR colors) 	 Compton-thick AGNs (even hard w/ NuSTAR) Ambiguous at low luminosities (<10⁴²)

AGN Selection Comparison / Overlap

- These AGNs live in different host galaxies!
- → not multiple views of the same system
- → different evolutionary paths and/or different points along an evolutionary path? (e.g., Hopkins+2008; Hickox+2009; Alexander & Hickox 2012)

Hickox+ 2009 (also Juneau+ 2013, Menzel+ 2015)

AGN Identification: Methods

- Euclid "internal" identification of AGNs:
 - NIR spectroscopy
 - Broad lines (type 1): a few 10⁵ at 0.9<z<9
 - Narrow lines (type 2): ~ 8000 from [NII]/H α ; 2.7×10^4 from [OIII]/H β
 - Imaging
 - Point-sources (w/ OU-PHZ)
 - SED fitting (w/ GAWG-WP1; OU-PHZ)
 - Variability
- Euclid "external" identification of AGNs:
 - Ancillary data (OU-MER?)
 - X-ray (e.g., eROSITA)
 - MIR/FIR? (e.g., WISE)
 - Radio
 - Follow-up surveys

AGN Identification: Challenges

- Limited spectral resolution R~250
 - Blending of key emission lines (H α +[NII]) (w/ WP2)
- Limited availability of given sets of diagnostic emission lines (for Type 2 AGN)
 - "BPT" lines only at 1.5<z<1.8 (red) or 1<z<1.8 (red+blue)</p>
 - [NII]/ $H\alpha$ at 0.9<z<1.8 (red) or 0.4<z<1.8 (red+blue)
 - [OIII]/Hβ at 1.5<z<2.7 (red) or 1.0<z<2.7 (red+blue)
 - Behavior of emission line diagnostics at high redshift? (e.g., Kewley+2013a,b; Juneau+2014, Steidel+2014)
- Heterogeneous selection/detection limits from multiwavelength AGN studies (X-ray, Infrared, etc.)

AGN Identification: Challenges

Close collaboration w/ OU-PHZ (AGN WP coord. Salvato):

Q1:Are we using an homogenised classification, or, when possible we go deeper and use more data?

or Q2: How do we take into account the different data depth? How we document that?

TODO:

- 1)see a which depth you can extend the various methods
- 2)Check AllWISE vs. UNWISE
- 3)Check ability in computing photo for non X-ray AGN.

AGN Identification: Progress

- Close collaboration w/ OU-PHZ (AGN WP coord. Salvato):
 - Already testing/comparing AGN identification methods with existing datasets (SDSS, Stripe82-X, XMM-XXL, WISE, AllWISE, ...)
 - Already testing/comparing AGN photo-z methods (e.g., SED fitting vs.
 Machine Learning)
 - Ongoing work on testing emission-line diagnostics at redshift>1
- At OU-PHZ level (required for main mission; coord. Paltani):
 - For proper object classification, we need a spectroscopic training set (ongoing effort in North by Capak+)
 - + need another spec-z sample to verify the accuracy (independent from training set)

Expected Scientific Outcome

- Key insights into Galaxy Evolution:
 - \rightarrow Black-Hole Galaxy connection during the peak epoch of activity (z $^{\sim}$ 2)
 - → First Black Holes (seeds) and their growth across Cosmic time
- <u>Key Euclid advantage: Host galaxy properties</u> such as morphologies (talks by Tasca, Huertas-Company, Duc), and galaxy stellar masses
 - → How are BH fueled: galaxy collisions vs. isolated galaxies?
- Large-scale environment/clustering of AGN hosts
 - → How are BH fueled: in dense or field environment?
- The most luminous AGNs back to young universe (redshift > 7)
 - → The most active growth episodes + earliest supermassive black holes
- NEEDED: Multi-wl surveys (eROSITA, WISE, etc.); Close ties with other GAWG WPs and OUs (PHZ and SPE)