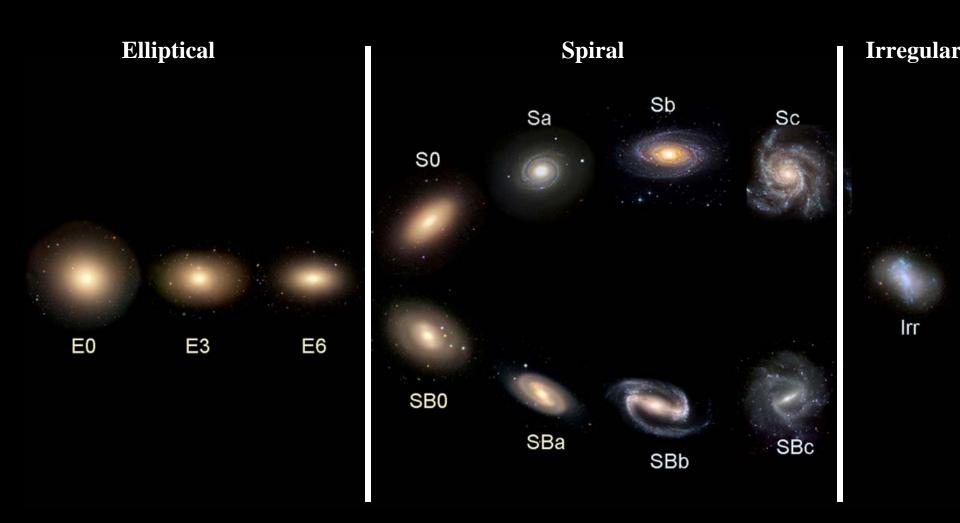


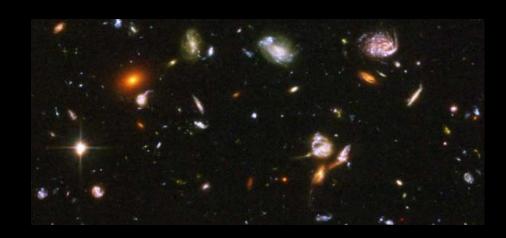
Galaxy morphology


...some thoughts

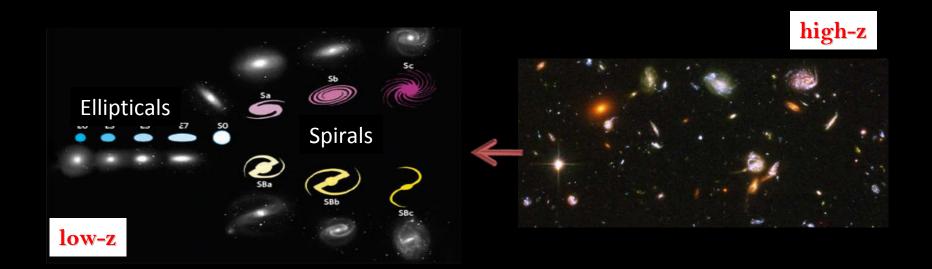
Tasca Lidia Laboratoire d'Astrophysique de Marseille

Hubble tuning fork

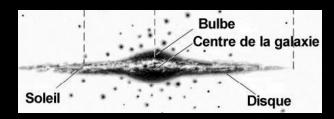
Morphological evolution


Local Galaxies, z~0

3% 15% 72% 10%	Е	S0	Spiral Sp	Peculiar
	3%	15%	72%	10%


Distant galaxies, z~1

Е	S0	Spiral	Peculiar
4%	13%	31%	52%


High-z galaxies

Morphology: a key ingredient

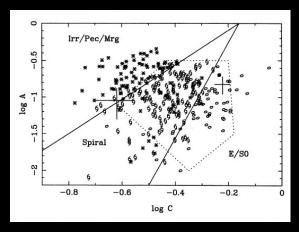
• How stars distribute in the two main galaxy components: bulges & discs

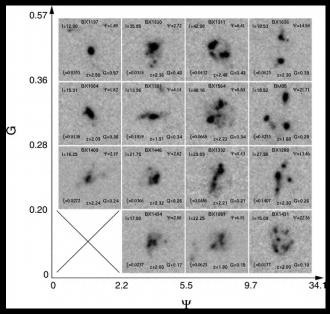
- Does the environment play a role?
- Which are the main physical processes at play?

Why galaxy morphology?

- It is a primary galaxy property
- Galaxy structure is a robust and stable property
- Give us insight on the physical mechanisms at play to shape galaxies
- Allows to discriminate among different scenarios of galaxy formation & evolution
- Provide simple prescriptions/constraints for simulations
- The evolving trends, in sizes, structures, and morphologies, reveal the formation mechanisms behind galaxies and provides a new and unique way to test theories of galaxy formation

Euclid strength


- High statistics (1B sources, 50M spectra)
- Rare populations (blue ellipticals, red spirals)
- Connection to the environment (over-density, groups, ...)
- Wide & Deep surveys
- Large redshift range → evolutionary studies
- At low-z, resolved the stellar population of all galaxies within ~5 Mpc, providing a complete census of all morphological and spectral types
- Spectro-photometric properties
- Morphologies, masses, and SFR out to z~2 with a 4 times better resolution, and 3 NIR magnitudes deeper, than possible from ground
- •


Visual classification

- The classic approach towards understanding the structures of galaxies
- Only possible with Citizen Science projects which provides online tools for non-scientists to classify over a million galaxies

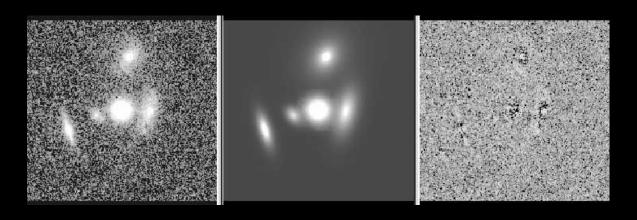
A morphological type is only a visual determination of how a galaxy looks, and does not predispose to a certain local galaxy type or template, or to ascribe a certain formation history or scale.

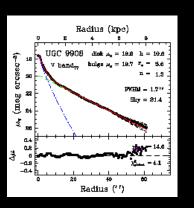
Non parametric measurement of structures


```
CAS (Conselice, 2003)

GM_{20} (Lotz et al., 2004)

T\psi\zeta (Law et al., 2007)


F (Matsuda et al., 2011)


MID (Freeman et al., 2013)
```

Structural parameters which allow a multi-space classification scheme.

Parametric measurement of structures

The fitting of galaxy two dimensional profiles with various forms is done with widely used & tested codes: Gim2D (Simard 2011), GALFIT (Peng 2002), ...

To study structural properties and galaxy subcomponents

 $\mathbf{n}, \mathbf{r}_{e}$ (Sérsic, 1968) $\mathbf{r}_{out}, \alpha, \beta$ (Ferrer profile) $\mathbf{r}_{c}, \mathbf{r}_{t}, \alpha$ (Mod. King profile) $\mathbf{r}_{b}, \alpha, \beta, \gamma$ (Nuker profile)

Which morphology for Euclid?

First step: "simple" structural measurement

Visual classification Training sample Non- parametric measurements (C, A, G, M20, T, ψ , ζ ,)

Second step: Automated classification tool (CAS, CAS+, SVM, PCA...)

Morphological classification

Third step: Parametric measurements (SB fit, pixel study)

"High level" morphology

Single component fit: structural properties

Bulge/Disc decomposition: galaxy subcomponents

How to implement in SDC?

Interaction with OUs, SWG


Synergy with WL

- Accurate PSF
- Inclination & ellipticity (Kaiser & Squires 1993)
- Bayesian galaxy shape measurement (Miller et al. 2012)
- •

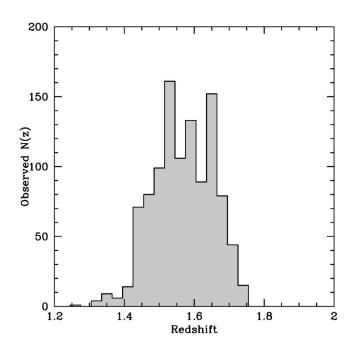
Interaction with OU-MER

- WP devoted to implement morphological parameters
- Codes & morphological know-how from morpho-experts
- Clarify parameters needed and their accuracy
- Strong interaction SWG-morphology & OU-MER fundamental
- •

Take home message

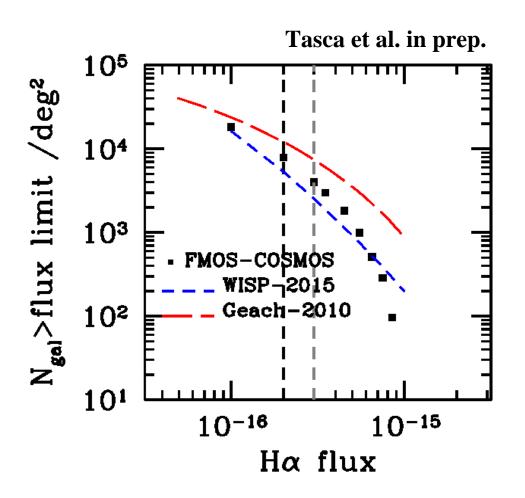
- Galaxy morphology fundamental for Legacy science
- The evolving trends, in sizes, structures, and morphologies, reveal the formation mechanisms behind galaxies and provides a new and unique way to test theories of galaxy formation
- Need to compute structural parameters while extracting sources
- Clear synergy with WL, MER, VIS, NIR & SIM
- Need for strong interaction

Bonus


Ha emitters counts

- Volume density of emitters: a key element for clustering signal on BAO and RSD probes
- Recent studies have led to a revision towards a lower number of emitters
 - Worry on the performance of the clustering measurements
 - Led to adjustment of survey strategy
- But: H α counts at z>1 are difficult given current instrumentation
 - Ground-based infrared spectroscopy surveys limited
 - HST grism spectroscopy surveys: small field limited by cosmic variance and limited wavelength range <1.4 microns; indirect estimates using OIII

Use the new FMOS-COSMOS infrared survey to 1.8 microns to count Hα emitters


FMOS-COSMOS

- Silverman et al. 2015
 - FMOS on Subaru: J and H bands
- 1000 galaxies, 1.4<z<1.7
- Completeness: $\sim 10^{-16}$ erg.s⁻¹.cm⁻²
- 1 deg² (cosmic variance < 10%)

Ha counts

Preliminary Results 1<z<2 (not taking into account completeness and purity)

7900 galaxies /deg² with $F(H\alpha)>2\times10^{-16} \text{ erg.s}^{-1}.\text{cm}^{-2}$

4000 galaxies /deg² with $F(H\alpha)>3\times10^{-16} erg.s^{-1}.cm^{-2}$

 \times 1.3-1.5 more than Mehta et al. (WISP)

HAPPY NEW YEAR ©!