SWG Cross-correlation with CMB

Coordinators: N. Aghanim & C. Baccigalupi

Initial density perturbations → quantum fluctuations Cosmological framework → Dark Matter & baryon densities, etc.

Evolution and growth → gravitational collapse

Formation of cosmic structures galaxies/stars

→ complex baryonic physics

Dark matter

Dominant component detected indirectly

DM → lenses CMB photons sources at high redshifts & background source population at low z

CMB lensing: anisotropy displacements

Galaxy lensing: shape modifications

Baryonic matter

Galaxies Hot has

Hot gas → Xray emission & Sunyaev-Zeldovich

Galaxy distribution

Coma in ROSAT

A2318 in Planck HFI

Cross-correlation with CMB Combination of data and likelihoods

Traditionally XCMB = Integrated Sachs-Wolfe effect Probes derivative of growth function → acceleration of expansion and modified gravity, and cosmological parameters

$$\Delta_{t}^{\text{ISW}}(\hat{\mathbf{n}}) \equiv \left(\frac{\Delta T(\hat{\mathbf{n}})}{T}\right) = -2 \int dz \, e^{-\tau(z)} \, \frac{d\Phi}{dz}(\hat{\mathbf{n}}, z) \qquad \dot{\Phi} \equiv \partial/\partial z [(1+z)D(z)] \equiv \partial g/\partial z \\ g(z) \equiv f \left[\Omega_{m}(z), E(z)\right]$$

$$E(z)^{2} \equiv \Omega_{m}(1+z)^{3} + \Omega_{K}(1+z)^{2} + \Omega_{DE}(1+z)^{3} \exp\left[3\int_{0}^{z} dz' \, \underline{w(z')}/(1+z')\right]$$

E.g. galaxy-CMB correlation

$$C_l^{\text{ISW-G}} = \frac{2}{\pi} \int dk \, k^2 P_{\delta\delta}(k) I_l^{\text{ISW}}(k) I_l^{\text{G}}(k)$$

Probes the distribution of matter at large scales (DM/galaxy bias, hydrostatic bias, etc.)

→ Explore higher-order correlation estimators

Primary CMB data status

Very large to small scales

Secondary CMB data status

CMB lensing maps from the largest to the smallest scales

Planck collaboration 2014, 2015

Comic IR background from dusty gal.

Planck collaboration 2014, 2015

Integrated Sachs-Wolfe

Planck Collaboration 2014, 2015

Present status: detection of iSW through X-correlation or stacking at 46 at most

									,	
	LSS data	COMMANDER		NILC		SEVEM		SMICA		Expected
1		$A \pm \sigma_A$	S/N	S/N						
	NVSS	0.95 ± 0.36	2.61	0.94 ± 0.36	2.59	0.95 ± 0.36	2.62	0.95 ± 0.36	2.61	2.78
	WISE-AGN	0.95 ± 0.60	1.58	0.96 ± 0.60	1.59	0.95 ± 0.60	1.58	1.00 ± 0.60	1.66	1.67
	WISE-GAL	0.73 ± 0.53	1.37	0.72 ± 0.53	1.35	0.74 ± 0.53	1.38	0.77 ± 0.53	1.44	1.89
	SDSS-CMASS/LOWZ	1.37 ± 0.56	2.42	1.36 ± 0.56	2.40	1.37 ± 0.56	2.43	1.37 ± 0.56	2.44	1.79
	SDSS-MphG	1.60 ± 0.68	2.34	1.59 ± 0.68	2.34	1.61 ± 0.68	2.36	1.62 ± 0.68	2.38	1.47
	lensing	1.04 ± 0.33	3.15	1.04 ± 0.33	3.16	1.05 ± 0.33	3.17	1.06 ± 0.33	3.20	3.03
	NVSS+ lens.	1.04 ± 0.28	3.79	1.04 ± 0.28	3.78	1.05 ± 0.28	3.81	1.05 ± 0.28	3.81	3.57
	WISE	0.84 ± 0.45	1.88	0.84 ± 0.45	1.88	0.84 ± 0.45	1.88	0.88 ± 0.45	1.97	2.22
	SDSS	1.49 ± 0.55	2.73	1.48 ± 0.55	2.70	1.50 ± 0.55	2.74	1.50 ± 0.55	2.74	1.82
	NVSS+WISE+SDSS	0.89 ± 0.31	2.87	0.89 ± 0.31	2.87	0.89 ± 0.31	2.87	0.90 ± 0.31	2.90	3.22
	All	1.00 ± 0.25	4.00	0.99 ± 0.25	3.96	1.00 ± 0.25	4.00	1.00 ± 0.25	4.00	4.00

Ilic et al. 2014

 $0.49 < \Omega_{\Lambda} < 0.78$ (68%), best-fit $\Omega_{\Lambda} = 0.67$, $\Omega_{\Lambda} > 0$ at $3 \sigma -4.45 < w < -1.07$ (68%), best-fit w = -1.01

- → Controlled survey & Reconstruction of iSW
- → Exploration of theoretical models for DE and Modified gravity

Galaxy/CMB X-correlation

Detected @~36 (e.g. Hand et al. 2013). Future Euclid ~30-406

→ Bias measurement

$$C_{\ell}^{\kappa g} = \int_0^{z_*} \frac{dz}{c} \frac{H(z)}{\chi^2(z)} W^{\kappa}(z) b(z) \frac{dN}{dz} P\left(k, z\right)$$

Cross-correlation between CMB lensing and high-z galaxies (z>1.5) of the H-ATLAS galaxy density maps \rightarrow bias measurement \sim 3.5 + bias in 2 bins

Correlation of matter traced by SPT CMB lensing (contours) and distribution of high z galaxies (grayscale; Herschel 500 um)

Galaxy lensing/CMB lensing X-correlation

Intrinsic alignment ~10-18% X-correlation (e.g. Hall &Taylor 2014, Troxel & Ishak 2014) → prospective for self calibration of IA?

CIB/Galaxy X-correlation

Measured cross spectra of CIB maps with CMASS LRGs with best fits for 2 SEDs → Constraints on the halo model parameters e.g. dust temperature 26K @z~0.55; most efficient halo containing star-forming galaxies Serra et al. 2014 log(M)=12.84; bias = 1.45

→ Future Euclid: possible tomographic analyses by binning sources?

SZ/Galaxy lensing X-correlation

Galaxy lensing tSZ cross correlation with Planck and CFHTLenS

- → constraints on hydrostatic mass bias (b_{hvd}~0.78)
- → Future Euclid: constraints on pressure profile parameters and mass-scaling relation
- → Contamination by tSZ/CIB correlation (e.g. Hurier 2015, Planck collaboration 2015)

Cross-correlation with CMB

Strengths:

- CMB data in hand or being taken (availability of very small scale CMB?)
- First results with present surveys
- Full expertise in CMB
 - + some galaxy surveys

Weaknesses:

- First results with present surveys
- Expertise in CMB + galaxy surveys
- → Not enough engagement in Euclid
- → No common/validated analysis tools *yet*

WP1: Integrated Sachs-Wolfe effect [Rassat, *llic*]

WP2: Rees-Sciama [Carbone, Baldi]

WP3: New CMB-Lensing extraction methods [Benoit-Levy]

WP4: CMB lensing likelihood [Benabed]

WP5: Correlation of CMB lensing maps with Tracers [Baccigalupi]

WP6: Correlation of tSZ maps & data with Tracers [Aghanim]

WP7: CMBXC data processing validation [Aghanim, Baccigalupi]

Dedicated SWG <u>1.5 day meeting January 12-13 @IAS Orsay</u> **Objectives**:

Report work/progress

Update/add WP and prioritize them

Definition of specific/concrete tasks per WP

Discuss common data analysis tools