

Sandrine Codis
IAP



an alternative probe for Euclid era cosmology?

Bernardeau, Pichon, Codis: arXiv: 1310.8134

Journées Euclid France, 5 Dec. 2013

#### Messages to bring back home:

- we are able to **predict very accurately N-pt** statistics in the non-linear regime using Count-In-Cells statistics: low-redshift observables have analytical and cosmology-dependent predictions e.g 1% on  $P(\rho)$  @ z=0.7
- > at tree order, everything is encoded in the dynamics of the spherical collapse
- > we are able to do the theory of the slope of the density field:
- Cosmic scatter is reduced in low-density regions motivating the study of **void profiles.**



$$s = R_1 \frac{\rho_2 - \rho_1}{R_2 - R_1}$$

Introduction:
Basics of perturbation

theory



### A self-gravitating expanding dust fluid

The Vlasov-Poisson equations (collision-less Boltzmann equation) - f(x,p) is the phase space density distribution - are fully nonlinear.

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial}{\partial t}f(\mathbf{x}, \mathbf{p}, t) + \frac{\mathbf{p}}{ma^2}\frac{\partial}{\partial \mathbf{x}}f(\mathbf{x}, \mathbf{p}, t) - m\frac{\partial}{\partial \mathbf{x}}\Phi(\mathbf{x})\frac{\partial}{\partial \mathbf{p}}f(\mathbf{x}, \mathbf{p}, t) = 0$$

$$\Delta\Phi(\mathbf{x}) = \frac{4\pi Gm}{a}\left(\int f(\mathbf{x}, \mathbf{p}, t)\mathrm{d}^3\mathbf{p} - \bar{n}\right)$$

#### The rules of the game:

> single flow equations

$$\frac{\partial}{\partial t}\delta(\mathbf{x},t) + \frac{1}{a}[(1+\delta(\mathbf{x},t))\mathbf{u}_i(\mathbf{x},t)]_{,i} = 0$$

Peebles 1980; Fry 1984; Bernardeau, Colombi, Gaztañaga, Scoccimarro, 2002

$$\frac{\partial}{\partial t}\mathbf{u}_{i}(\mathbf{x},t) + \frac{\dot{a}}{a}\mathbf{u}_{i}(\mathbf{x},t) + \frac{1}{a}\mathbf{u}_{j}(\mathbf{x},t)\mathbf{u}_{i,j}(\mathbf{x},t) = -\frac{1}{a}\Phi_{,i}(\mathbf{x},t) + \mathbf{X}.$$

$$\Phi_{,ii}(\mathbf{x},t) - 4\pi G\overline{\rho} \ a^{2} \ \delta(\mathbf{x},t) = 0$$

> it is possible to analytically expand the cosmic fields with respect to initial density fields

$$\delta(\mathbf{x},t) = \delta^{(1)}(\mathbf{x},t) + \delta^{(2)}(\mathbf{x},t) + \dots$$

Example of contribution to the 3 and 5-point

correlation functions at tree order





it has a non-trivial dependence on the wave vectors through the functions F3 and F2

#### Charting PT

## number of loops in standard PT for Gaussian Initial Conditions

|                    | Tree order<br>LO                             | I-loop<br>NLO                      | 2-loops<br>NNLO | 2.5<br>loops | 3-loops                  | p-loops                 |
|--------------------|----------------------------------------------|------------------------------------|-----------------|--------------|--------------------------|-------------------------|
| 2-point statistics | ОК                                           | ОК                                 | ОК              | EFT          | partial exact<br>results | partial resum           |
| 3-point statistics | ОК                                           | OK (but not systematics)           |                 |              |                          | partial<br>resummations |
| 4-point statistics | ОК                                           | to be done<br>(cosmic<br>variance) |                 |              |                          |                         |
| N-point statistics | OK, in specific geometries (counts in cells) |                                    |                 |              |                          |                         |

#### Charting PT

### number of loops in standard PT for Gaussian Initial Conditions

Tree order I-loop 2.5 2-loops 3-loops ...p-loops **NNLO** LO NLO loops 2-point partial exact OK OK OK **EFT** partial resum results statistics down.for smaller 3-point breaks partial systematics) resummations statistics to be done... 4-point OK (cosmic statistics variance) OK, in specific N-point geometries statistics (counts in cells)

The trick of the spherical collapse leads to analytic predictions in the non-linear regime @ few percent level until  $\sigma^2 \sim 0.7$  !!

Order of observable in field expansion

# Density PDFs in concentric cells



description of full joint PDF densities in concentric cells:

Sandrine Codis, IAP

The spherical collapse: the solution for specific initial conditions

The radius evolution

$$\frac{\mathrm{d}^2 R}{\mathrm{d}t^2} = -\frac{GM(< R)}{R^2}$$



The exact non-linear mapping for spherically symmetric initial field (for growing mode setting)

For spherical symmetry perturbations there exists a function  $\zeta$  that gives the density at time  $\eta$  knowing the density  $\rho_0$  within the same Lagrangian radius at time  $\eta_0$  $\zeta_{
ho}(\eta, 
ho_0, \eta_0)$ 

cosmology-dependent!

 $R_1 (\rho_1)^{1/3}$ 

## The mathematical part, construction of the whole cumulant generating function

from ideas in Bernardeau' 94 see also Bernardeau & Valageas '00 and fully developed in Valageas '02

It is given by the following relation

(multi-dimensional Laplace transform of joint-PDFs):

$$\varphi(\{\lambda_k\}) = \sum_{p_i=0}^{\infty} \langle \Pi_i \rho_i^{p_i} \rangle_c \frac{\Pi_i \lambda_i^{p_i}}{\Pi_i p_i!} \simeq \lambda_i \langle \rho_i \rangle + \lambda_i \lambda_j \langle \rho_i \rho_j \rangle + \dots$$

$$\exp\left[\varphi(\{\lambda_k\})\right] = \mathcal{M}(\{\lambda_k\}) = \left\langle \exp(\sum_i \lambda_i \rho_i) \right\rangle$$

$$= \int_0^\infty \prod_i \mathrm{d}\rho_i P(\{\rho_k\}) \exp\left(\sum_i \lambda_i \rho_i\right)$$
initial density contrast

Formal solution:

$$\exp\left[\varphi(\{\lambda_i\})\right] = \int \mathcal{D}\left[\tau(\vec{x})\right] \mathcal{P}\left[\tau(\vec{x})\right] \exp(\lambda_i \rho_i \left[\tau(\vec{x})\right])$$
known Gaussian pdf involving the linear power spectrum

Principle of the calculations: in the small variance approximation one can look for the most probable configuration - for fixed  $\rho_i$  - and compute the resulting cumulant generating function using the steepest-descent method.

The (conjectured) solution for spherical cells: an initial spherical perturbation the profile of which can be computed from **spherical collapse** solution.

$$ho_i = \zeta_{
m SC}( au_i)$$
 one-to-one mapping

#### Application 1: 1-cell PDF

The inverse Laplace transform,

$$\mathcal{P}(\hat{\rho}_1) = \int_{-i\infty}^{+i\infty} \frac{d\lambda_1}{2\pi i} \exp(-\lambda_1 \hat{\rho}_1 + \varphi(\lambda_1))$$

requires integration into the complex plane.

$$P(\rho) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{\partial^2 \Psi(\rho)}{\partial \rho^2}} \exp\left[-\Psi(\rho)\right] \quad P(\rho) = \frac{3a_{\frac{3}{2}}}{4\sqrt{\pi}} \exp\left(\varphi^{(c)} - \lambda^{(c)}\rho\right) \frac{1}{(\rho + r_1 + r_2/\rho + \ldots)^{5/2}}$$
 low-density approximation large-density approximation

functions of the cosmology via



Sandrine Codis, IAP

#### Application 1: 1-cell PDF

The inverse Laplace transform,

$$\mathcal{P}(\hat{\rho}_1) = \int_{-i\infty}^{+i\infty} \frac{d\lambda_1}{2\pi i} \exp(-\lambda_1 \hat{\rho}_1 + \varphi(\lambda_1))$$

requires integration into the complex plane.

$$P(\rho) = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{\partial^2 \Psi(\rho)}{\partial \rho^2}} \exp\left[-\Psi(\rho)\right] \quad P(\rho) = \frac{3a_{\frac{3}{2}}}{4\sqrt{\pi}} \exp\left(\varphi^{(c)} - \lambda^{(c)}\rho\right) \frac{1}{(\rho + r_1 + r_2/\rho + \dots)^{5/2}} \cdot \text{low-density approximation}$$

low-density approximation

functions of the cosmology via



Sandrine Codis, IAP

## Comparison with simulations: the 1-cell PDF

 $(500 h^{-1} \text{ Mpc})^{3}$  $R = 10 h^{-1} \text{ Mpc}$ 

agreement even deeply in the nonlinear regime, in the rare event tails of the PDF!







# Application 2 (two cells): Density slopes and profiles

$$s = R_1 \frac{\rho_2 - \rho_1}{R_2 - R_1}$$



#### The 2-cell cumulant generating function

The density slope : 
$$s = R_1 \frac{\rho_2 - \rho_1}{R_2 - R_1}$$
 mulant generating



The global shape of the joint cumulant generating function of the density slope, s, with the density ρ<sub>1</sub> (an observable itself):



numerical results for  $\sigma = 0.51$ 



critical lines = stationary constraint is singular

$$\langle \exp(\lambda_1 \rho_1 + \lambda_2 \rho_2) \rangle \to \infty$$

#### The PDF of density slope

The density slope:



$$s = R_1 \frac{\rho_2 - \rho_1}{R_2 - R_1}$$

 $\lambda$  [conjugate to the density]

Similarly to the 1-cell density PDF one can then compute the one-point density profile PDF.

$$s = R_1 \frac{\rho_2 - \rho_1}{R_2 - R_1}$$
 profile PDF. 
$$P(s) = \int_{-i\infty + \epsilon}^{+i\infty + \epsilon} \frac{\mathrm{d}\lambda_2}{2\pi \mathrm{i}} \exp\left[-\lambda_2 s + \varphi(-\lambda_2, \lambda_2)\right]$$

One can consider the joint cumulant



#### The expected slope given a density constraint

-0.10

0.5

1.0

1.5

 $\rho_1$ 

2.0



slope? expectation value? cosmic variance?

Best predictions are in the low-density regime. This is where saddle-point corrections are less important.

Impact of scale dependence of the power spectrum index



#### The profile shape

(expected density as a function of the radius)

Expected density as a function of radius given a constraint at a given scale.





 $\rho_2$ ? expectation value? cosmic variance? as a function of R<sub>2</sub>?

Sandrine Codis, IAP

#### The profile shape

(expected density as a function of the radius)



#### The profile shape

(expected density as a function of the radius)





# Predictions vs numerical simulations (expectation+scatter)



the cosmic scatter is reduced in low-density regions

Prediction for full joint PDF densities in concentric cells:

$$P(\rho(R_1), \rho(R_2)) d\rho(R_1) d\rho(R_2)$$

-power-law power spectrum with index ns (-2.5)

Prediction for full joint PDF densities in concentric cells:

$$P(\rho(R_1), \rho(R_2)) d\rho(R_1) d\rho(R_2)$$

-power-law power spectrum with index ns (-2.5)

-we assume that the PDF is well-described by its saddle-point approximation and depends on 2 parameters:  $\mathbf{n}_s$  and  $\mathbf{v}$ (which parametrizes the spherical collapse, 3/2 here)

Prediction for full joint PDF densities in concentric cells:

$$P(\rho(R_1), \rho(R_2)) d\rho(R_1) d\rho(R_2)$$

-power-law power spectrum with index ns (-2.5)

-we assume that the PDF is well-described by its saddle-point approximation and depends on 2 parameters :  $\mathbf{n_s}$  and  $\mathbf{v}$ (which parametrizes the spherical collapse, 3/2 here)

-n=2,000 and 11,000 measurements corresponding to a survey volume of  $(200 h^{-1} \text{ Mpc})^3$  and  $(360 h^{-1} \text{ Mpc})^3$ 

Prediction for full joint PDF densities in concentric cells:

$$P(\rho(R_1), \rho(R_2)) d\rho(R_1) d\rho(R_2)$$



- -power-law power spectrum with index ns (-2.5)
- -we assume that the PDF is well-described by its saddle-point approximation and depends on 2 parameters: **n**<sub>s</sub> and **v**(which parametrizes the spherical collapse, 3/2 here)
- -n=2,000 and 11,000 measurements corresponding to a survey volume of  $(200 \ h^{-1} \ \text{Mpc})^3$  and  $(360 \ h^{-1} \ \text{Mpc})^3$

loglikelihood contours of the data at 1,3 and 5 sigma

#### Messages to bring back home:

- we are able to predict very accurately N-pt statistics in the non-linear regime using Count-In-Cells statistics: low-redshift observables have analytical and cosmology-dependent predictions e.g 1% on P(ρ) @ z=0.7
- > at tree order, everything is encoded in the dynamics of the **spherical collapse** 
  - > we are able to do the theory of the slope of the density field: cosmic scatter is reduced in low-density regions motivating the study of **void profiles.** 
    - These calculations can be applied to projected mass maps



$$s = R_1 \frac{\rho_2 - \rho_1}{R_2 - R_1}$$