

NISP ORGANISATION and PRODUCTS MODIFICATIONS

- Rémi Barbier (IPNL) : Detector scientist
- ➤ Italy has selected CGS for the hardware development (Data Processing Unit and Grism Wheel Assembly). Slight reorganization (software is INAF now) and reinforcement of the team
- > Spain has selected CRISA for the Instrument Control Unit
- Germany has selected Kaiser Trade for the Optics
- Kristian Pedersen (DTU) is replaced by Allan Hornstrup (DTU) as Danish PM
- > Reinforcement of the LAM team:
 - ✓ Anne Costille : Grism and AIT optical and OGSE interfaces with LAM
 - ✓ Florent Beaumont : Mechanical AIT responsible
 - ✓ Anne Commeau : NISP project control responsible
 - **√** ...
- NI-DS (Detection System) is now under the CPPM responsibility (was LAM)

I-SRR status (june 2013)

Operability requirement of detectors

- ✓ The Board was seriously concerned by the impact on the Instrument performance of the mismatch between the flow-down of requirements done by the NISP Team and the operability requirements in the SCS (Sensor Chip System) specification which has to be resolved urgently.
 - ✓ Renegotiation with TIS / NASA in good progress
 - ✓ ESA and EC on the same line
 - ✓ The NISP detector requirements (95% of the pixels compliant with the science request) are about to be accepted by NASA

CMOS versus LVDS protocol for detector data transmission

- ✓ LVDS is now decided. CMOS is killed due to 6m harness between Sidecar and DPU
- ✓ BUT, this could have SIGNIFICANT schedule impacts (delta qualification of the Sidecar ASIC; add transceiver CMOS->LVDS at cold !, ...)

NISP Instrument Schedule

- ✓ The Board is concerned that the presented schedule contains only six weeks of margin to the need date and does not include explicit contingencies
 - ✓ NISP is unable to proposed development plan modification and reduction of the NISP schedule in order to find margins for contingencies

CMU trade-off (Compensation Mechanism)

- ✓ EC has issued a technical note in which it is clearly stated that the CMU is not needed.
- ✓ Waiting for the formal ESA approval to remove the CMU from the baseline

> MASS

- ✓ NISP is compliant with the total mass allocation
- ✓ Work has to be done for NIOMADA mass reduction.

Data processing concept

- ✓ The Board notes that the recent change of the data processing scheme led to a modification of the DPU architecture that could not be fully reviewed at the SRR.
- ✓ Hardware redesign has been done by CGS with the new data processing requirement. 4 Maxwell boards is the baseline (as previously) but with additional memory capacity → NISP is confident to go to PDR with this baseline

- ➤ NI-SA: Structure Assembly; SiC Structure ■ ###
- NI-OA : Optical Assembly

✓ CaLA: Camera lens Assembly

- NI-FWA : Filter Wheel Assembly
 - Cryo mechanism
 - √ 3 Filters + CLOSE + OPEN ■
- NI-GWA: Grism Wheel Assembly
 - Cryo mechanism
 - ✓ 4 Grisms + OPEN
- NI-CU : Calibration Unit
 - √ 6 wavelength's
- NI-TC : Thermal Control
 - ✓ To control the optics at +/-0.3K all life (≈135K)

CoL

MISA

- > NI-SA (LAM) : Structure Assembly
 - ✓ SiC Structure
 - ✓ Boostec selected

- > NI-OA (MPE) : Optical Assembly
 - ✓ Detailed design in progress

- > NI-FWA (Spain) : Filter Wheel Assembly
 - Invar wheel optimization done

- > NI-GWA (Italy) : Grism Wheel Assembly
 - Invar wheel optimization done
- > NI-CM (CEA): Cryomechanism
 - STM manufacturing started
 - BBM (Breadboard model (quasi flight representative)
 - Breadboard conception review done in June

- > NI-GR (LAM) : Grism
 - BBM (mechanical and thermal)
 - Vibration and thermal vacuum cycles OK
 - BBM optic
 - 100mm Grism in progress

- > NI-FI (MPIA) : Filter optic
 - o BBM scale one
 - Tested in cryo : OK
 - Good performances

- > NI-CU (MPIA) : Calibration Unit
 - Led's evaluation (radiation effect, temperature effect)
 - Design done

NI-DS (Detection System; 15Kg; 100K/135K)

Euclid Consortium

- Molybdenum plate and blades
- Design done. Procurement started
- Sidecar support (Alu) and blades (Norway)
 - First mockup has been delivered to LAM

- SiC interface panel with NI-OMA (P4 panel)
 - Shall be ready for January 2014

- SCS (Sensor Chip System = detector + flex + Sidecar)
 - Very good Engineering detectors produced by TELEDYNE (8 grade 1 produced).
 - → 3 of them tested by Goddard for cross verification. Globally better data than TELEDYNE measured by Goddard
 - ➤ All the 8 grade 1 meet the NISP requirements in QE, noise and dark current for 95% of the pixels
 - CPPM tests to start in december

- NI-WE (Warm Electronics)
 - NI-ICU (Instrument Control Unit); Spain
 - ✓ TM/TC interface with SVM agreed to be 1553

- NI-DPU/DCU hardware (Detection Control / Data Processing Unit); Italy
 - ✓ Hardware redesign. New on board data processing requirement taken into account (Ki2 indices of quality)
 - 4 Maxwell boards is the baseline (as previously) but with SIGNIFICANT additional memory capacity
 - ✓ FPGA for controlling the Sidecar (1 FPGA for 2 sidecars)
 - Interface with the satellite agreed

- CMU on board or not. NISP DOES NOT WANT IT !!
- ➤ GHOST and STRAYLIGHT to be analyze in details. Hardware impact (baffling). To be done for PDR
- Modification of the Grism requirement: 4 red grisms are requested now (0, 90, 180, 270 Deg) instead of 2 blue and 2 red. See Anne talk
- Detector persistence: under study with Goddard data. See Anne talk

- AIT
 - > ERIOS is AT LAM

AIT

➤ The Thermal Vacuum Setup for the NI-DS Demonstration model is defined and will be available for feb 2014

- NISP OGSE : concept selected
- EGSE : normal progress
- NI-DS DM start of integration January 2014

- PDR preparation : march 2013
- NI-DS Demonstration Model Integration and test: until mid 2014
 - ➤ NI-DS DM = FLIGTH like with 2 good detectors and sidecar + 2 MUX and sidecar

+ 12 STM detector and sidecar

NI-OMA + NI-DS Demonstration Model manufacturing and test: 2014

- NO MODIFICATION
- DM : Demonstration Model
 - The first model to measure the detector noise on the focal plane with detector working together
 - To validate the SiC structure design
 - No optics
- STM : Structural and Thermal Model
 - \circ = DM
 - to be deliver to ESA without the detectors
- EQM : Engineering and Qualification model
 - The first model to measure the NISP end to end performances
- AVM: Avionic Model
 - O = WE EQM
 - to be deliver to ESA
- > FM

NISP: INSTRUMENT REVIEW & DELIVERY

