Euclid-France et le Centre de Calcul de l'IN2P3 (CCIN2P3)

SDC Production

Hébergé au CC-IN2P3 à Lyon

- Tier-1 LHC, PoP Renater, ...
- 16 000 cœurs (80 000 en 2015)
- 10 PB de stockage (120 en 2015)
- lien Internet à 10 Gb/s
- Bâtiment de 850 M2

Journée Euclid France 2012

SDC-FR Organisation

Euclid Consortium

Toulouse, 3 décembre 2012

CCIN2P3

 The IN2P3 Centre de Calcul (CCIN2P3) is engaged to be the SDC-PROD (different from the SDC-DEV) and a platform for science exploitation of the data.

Organisation

SDC développement

- Infrastructure de développement
- Développement, tests, maintenance de pipelines scientifiques
- Forte synergie paires OU/SDC

SDC production

- Infrastructure de V&V, production
- Centre de traitement et de stockage
- Opération des pipelines scientifiques

Euclid

Consortium

Usage to Date

- IAP: BerkeleyDB tests by Jean-Marc Delouis
- IPNL: IR detector test bench storage
- IRFU: LE3 analysis code and test data storage
- Lagrange: Prototype WAZP: "Cluster Finder" challenge
- CPPM: TIPS optimizations
- APC: OU-EXT simulation prototypes

Science (as opposed to OU) Needs

- Can't do, for example, n-body simulations.
- What can we do?

Next Steps

- Finalize 2014 CC resource request
 - TIPS needs ~100 TBytes in ~2014
 - LE3 needs ~150 TBytes in ~2015/2016
 - Others?
- Specific tests of using HPSS (tapes vs. disks)
- What can we do to help "transition" to the CC?
 - Start "challenges" there?

And now for something somewhat different...

Preliminary Requirements Review

EuclidSGS ArchitectureOverviewV1.doc

	Ressources for	oreseen		Ressources needed					
Year	Gflops	Output throughput [GB/s]	Storage [PB]	Gflops	Output throughput [GB/s]	Storage [PB]			
2014	855	8	0,3	0,001	0,00	0,01			
2015	1357	9	0,5	0,02	0,01	0,1			
2016	2154	11	1	0,1	0,05	0,5			
2017	3420	13	1,9	0,1	0,05	0,5			
2018	5429	15	3,6	0,8	0,3	3			
2019	8618	18	10	1,2	0,5	5			
2020	13680	21	19	4,2	2	16			
DR1	21715	25	24,3	4,8	3,0	29,6			
DR2	86860	41	165,8	13,4	8,4	82,8			
DR3	347440	67	1130,1	28,8	17,9	177,4			

What is the relation between these numbers and the 20-30 petabytes Yannick presented yesterday?

Figure 7: Comparison between resources foreseen and resources needed

- CC is mostly (but not exclusively) interested in the computing resource requirements
- Also:
 - Number of cores and Memory
 - Support needs

Raw Data Rate Context

- 6.5 GBytes/4000 second Observation Sequence ~ 140 GBytes/day ~ 50 TBytes/year Euclid : ~ 0.05 PByte/year (2-byte numbers)
- Planck: ~ 0.001 PBytes/year (2-byte numbers)
- LSST : ~ 6 PBytes/year (http://www.lsst.org/lsst/science/concept_data)
- CTA : 2-25 PBytes/year
 (http://www.isgtw.org/feature/grand-vision-cherenkov-telescope-array)
- LHC : ~15 PBytes/year (http://home.web.cern.ch/about/computing)

> Space-based

Storage Needs (including Analysis)

Launch (=1/6 End)

Rachid points out that we may be able to address some these needs using HPSS. We have little experience with this, but perhaps can implement a "data challenge". Remember: we **assume** that we are responsible for ~30% of this

Assuming 7% Yearly Decline in Price

Assuming 15% Yearly Decline in Price

Assuming 30% Yearly Decline in Price

⊞	■ Planning ☆ File Edit View Insert Format Data Tools Help All changes saved in Drive														Comments	Satellite Euclid 👻				
		\$%	123 - A	rial	- 10	- B Z	<u></u> -5 A -	♦₀ - ⊞	• ∰ •	≣ - ⊥ -	- ⊒ 1	I [iii] 🗙 🗄	Σ -							
f×	=sum(F2:F18)																			
	Α	в	С	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R		
1	Year	Total Disk (PB)	French Disk (PB)	New Disk Purchase (PB)	CC TB Cost (Euro)	Disk Cost (2013 kEuro)														
2	2014	0.1	0.03	0.03	195.30	6														
3	2015	0.1	0.04	0.01	136.71	1				Disk Cost	(2013	kEuro)								
4	2016	1.1	0.32	0.28	95.70	27		_												
5	2017	3.6	1.09	0.77	66.99	51			120											
6	2018	8.6	2.58	1.52	46.89	71		_												
- /	2019	16.8	5.05	2.47	32.82	81		2												
0	2020	29.2	8.75	3.99	22.98	92		2	§ 90											
10	2021	70.8	21.25	7.02	11.00	98		- U												
11	2022	91.7	27.50	8.72	7.88	00 93		13					_							
12	2024	112.5	33.75	10.24	5.52	56		20	60		_									
13	2025	133.3	40.00	13.27	3.86	51		st (_									
14	2026	154.2	46.25	14.02	2.70	38		ပိ												
15	2027	175.0	52.50	14.97	1.89	28		sk	30											
16	2028	175.0	52.50	10.24	1.32	14		Ď	00											
17	2029	175.0	52.50	13.27	0.93	12														
18	2030	175.0	52.50	14.02	0.65	9			0											
19	Total			122.61		808			0	N .G	. 0.	-0 -0	- A G	-0	-0					
20									20	1" 2010	2010 2	020 2024	2024 2026	2020 2	030					
21	Disk Index	3.0								Voor										
22	2013 TB Cost	279.00										rear								
23	TB Cost Decline	30.00																		
24																				
25																_				
	+ Input Values CC Request JMD-Feuil1 JMD-E22																			
×																		Z		
									\sim											