Galaxy Clusters with Euclid

Probing Cosmology and Physical processes in dense environments

Sophie Maurogordato Laboratoire J.-L. Lagrange Observatoire de la Côte d'Azur, Nice

In collaboration with J. Bartlett, L. Moscardini, J. Weller, A. Biviano and the Clusters of galaxies SWG and OU-LE3 WPs

Why galaxy clusters?

- LSS results from growth of primordial density fluctuations under the influence of gravity and expansion
- Clusters of galaxies are the highest peaks of the large-scale matter density, most massive (typically several 10¹⁴ M_☉) bound structures Easy tracers of the growth of structure
- Since long used as tracers of underlying cosmology, in particular of $\Omega_{\rm M}$ and σ_8

Kravtsov and Borgani, 2012

Why galaxy clusters ?

Complementary probe to CMB, SNe, GC and WL:

Different systematics and degeneracies

Sensitive to the growth of structure (as WL): Combined with a purely geometrical probe can be used to test the validity of our theory of gravity

BUT

Complex astrophysics objects:

mix of galaxies, gas, dark matter Interactions between these components

Need to understand the physics at work and the evolution of these objects to constrain cosmology correctly.

Multiwavelength analysis

Chandra/ A. Mantz CFHT/ A. von der Linden SZ array/D. Marrone

Properties of the different components can be adressed using a multiwavelength approach:

- UV/Optical/NIR/IR: properties of galaxies (distribution, dynamics, starformation, stellar masses,...)
- X-Ray/SZ: physics of the thermal gaz
- Radio: non-thermal processes

Abell 1835 @z=0.35 from Allen, Evrard and White 2011

Galaxy clusters as probes of dark energy

Sensitive to DE:

- Growth rate of density perturbation
- Volume element

Mohr et al. 2002

Constraining dark energy from large cluster surveys

Becomes possible thanks to the recently completed/ forthcoming large cluster surveys:

optical/NIR: SDSS, Pan-STARRS, DES, KIDS, HSC, LSST, Euclid X-Ray: XMM serendipitous, XXL, eROSITA mm: SPT, ACT, Planck SZ catalogs

- Counts abundances: $\overline{N}(M_a, z_i) \equiv \overline{N}_{ai} = \frac{\Delta \Omega_i}{4\pi} \int_{z_i}^{z_{i+1}} dz \frac{dV}{dz} \int_{\ln M_a}^{\ln M_{a+1}} d\ln M \frac{dn}{d\ln M}$
- Cluster clustering: $P_c(k,z) = b^2(z)P_{DM}(k) = Ab^2g^2(z)k^nT^2(k)$ Clusters are strongly biased: high amplification factor! Search for BAOs in cluster distribution

Main challenges

- Mass is not a direct observable: assume proxies of mass
 Scaling relation: Mass/observable
- One has in general to deal with a redshift estimate
 > improved photometric redshifts
- Control systematics in detection: purity/completeness
 > well controlled selection function

Mass proxies and Scaling relations

• Multiwavelength approach:

Mass proxies: N_{opt} , shear signal, L_X , T_X , Y_X , M_{gas} , Y_{SZ}

• Beware of systematics:

Impact of survey selection function and cluster mass function on scaling relations (Mantz et al. 2010) correction for Malmquist bias (Pratt et al. 2010)

- Assumptions: Estimates of mass often rely on hydrostatic equilibrium Lensing based estimates free of assumptions on dynamical state
 Stacked weak lensing very useful when individual signal is too low
- Dispersion and Evolution with z

How to overcome these difficulties?

Use statistical properties of clusters sensitive to mass and simultaneously fit for cosmology and M-Obs relation (cluster clustering or other): Self-Calibration Majumdar and Mohr, 2003, Schuecker et al. 2003, Estrada et al. 2008

- Requires a large sample in the redshift range sensible to DE [0,2] Caveat: assumes knowledge of evolution of cluster structure !
- Best combined with detailed follow-up of a sub-sample of clusters with precise mass and redshift determination

enabled by EUCLID !

Cluster activity in Euclid

• Science Working Group

Coords.: J. Weller, L. Moscardini, J. Bartlett ~ 100 members (Mar. 2013)

Tasks:

Fix the science objectives Requirements: pipeline products Requirements: pipeline performances Verify that the requirements are met Final science analyses

Cluster activity in Euclid

• OU-LE3 WP Clusters of Galaxies

Implementation:

Coords: A. Biviano, S. Maurogordato ~ 50 members (May 2013)

Validation:

Coords.: T. Giannantonio, R. Pello ~ 20 members (May 2013)

Tasks: Implement/validate algorithms

- Cluster detection & Selection Function
- Mass proxy estimates: richness velocity dispersion
- Cluster Clustering

Clusters in Euclid from the photometric survey

Selection function: Analytical estimate based on:

Ks cluster Schechter LF Lin et al(2003) Ks* passive evolution No evolution of α nor ϕ^* HAB LF varying with z Estimate N(r<r200) function of M200 and z

Density of field galaxies: H-band counts: Metcalfe et al. 2006 z distribution: K20 survey Cimatti et al. 2002 Estimate of N/σfield

Clusters with M_{200} > 1.6 10¹⁴ M_{\odot} detected at 3 σ for all z

courtesy A. Biviano

Number of clusters expected

Courtesy A. Biviano

Cluster selection function: spectroscopy

Forecasts from Euclid clusters

Modified Gravity

DE parameters

Euclid WL+GC combined: predicted performances Euclid

DE constraints from Euclid: 68% confidence contours in the (w_p, w_a) .

Constraints on the γ and n_s . Errors marginalised over all other parameters.

Cosmology with Clusters in Euclid

 Large sky coverage, Strong statistics, sampling the high z tail Analytical estimated selection function of the photometric catalog nearly flat:

All Λ CDM clusters with M> 2 10¹⁴ M_{\odot} detected at 3 σ up to z=2!

- Needs an optimized cluster finder (purity & completness) with well controlled selection function
- Calibration of the mass-observable relation and scatter:
 - State of the art WL mass estimates
 - Multiwavelength Synergy for scaling relations: e-Rosita, Athena+, Planck,...

Cluster detection in Euclid Ongoing activity in OULE3 WP Clusters

Detection from photometric and spectroscopic surveys: 8 codes currently challenging

✓ Density field based: 2D & (2+1)D

Percolation - FOF: Farrens et al. 2011 Voronoi Tessellation: Cucciati et al. 2012 Overdensities in 2D+1D (z phots): Mazure et al 2007, Adami et al. 2009 Wavelets: WAZP Benoist et al. 2012, Eisenhardt et al. 2008

✓ Based on « filters » derived from the « known » properties of clusters:

- Luminosity function, radial profiles (1 band or more) Optimal matched filter detection, Bellagamba et al. 2011
- Colours : Red Sequence (at least 2 bands): Mei & Licitra 2013 MaDCoWS: Gettings et al. 2012

What is expected for a good cluster finder?

- Algorithm automated and objective
- Well understood selection function as a function of redshift and mass
 - Optimized purity and completness
- Minimal constraints on cluster properties (avoid selection bias)
- Large coverage of the mass function (in particular at the low end)
- Output: Basic physical properties of clusters:
 - z estimate
 - Luminosity, Richness > mass proxy

Splinter meeting SWG Galaxy Clusters: Euclid Mission Conference Copenhagen 14-16/05/2012

Detection from gravitational lensing

• Weak lensing: see talk by J.L Starck

Recent developments in the WL WP based on: Weak lensing galaxy cluster field reconstruction (Jullo et al. 2013) 3D reconstruction with GLIMPSE (Leonard et al. 2013)

see also:

- shapelets: Bergé et al. 2008
- shear peaks: Abate et al. 2009, Geller et al. 2010, Shan et al. 2012
- Strong lensing: see talk by R. Gavazzi
 - Cabanac et al. 2007, Limousin et al. 2009

Splinter meeting SWG Galaxy Clusters: Euclid Mission Conference Copenhagen 14-16/05/2012

Euclid Cluster WL Stack

Galaxy clusters in Euclid: Astrophysical issues

- Evolution of galaxies in dense environments
- Physical processes in clusters
- Detection of protoclusters (astrophysical & cosmological issue)

Euclid: Evolution of galaxy properties in dense environment

- Evolution of the Morphology-density relation: thanks to the high spatial resolution in the VIS channel reachs ~M* +2 at z≤1.4 , ~M*for higher z ~5000 galaxies in ~700 clusters at z≥1 ~1800 galaxies with zspec
- Evolution of the cluster RS to ~HAB*+2 out to z~2 ~700 clusters at z≥1 (~30000 galaxies) ~100 clusters at z≥1.5 (~4000 galaxies)
- Evolution of star formation rate per mass in clusters: SFR from Hα line: SFR/M with 1000 galaxies in z>1 clusters

Euclid:optimised for shape measurementsonsortium M51

SDSS @ z=0.1

Euclid @ z=0.1

Euclid @ z=0.7

• Euclid images of z~1 galaxies: same resolution as SDSS images at z~0.05 and at least 3 magnitudes deeper.

• Space imaging of Euclid will outperform any other surveys of weak lensing.

Cluster with Euclid VIS+NIS imaging

Euclid Consortium

Euclid combined VIS+Y+J+H images of a simulated cluster

> Courtesy of M. Meneghetti

Euclid + e-Rosita : Physical processes in clusters

Synergy with future X-ray observatories: Unprecedently detailed analysis of the gas/galaxy properties: Clues on physics of baryons in clusters

Comparison with e-Rosita up to z=1 (most e-Rosita clusters detected in the photometric survey, with > 5 redshifts measured from the spectroscopic one)

Scaling relations between L_{opt} , L_X , Y_X , M_{gas} , stacked WL mass

Future ESA Athena high-energy mission, extending to high z ?

Very high-mass high redshift clusters

Tension with LCDM (>3\sigma) if **Euclid** will find: a cluster of M>2.2 10¹⁵ M_{sun}(like ACT-CL J0102) in 1<z<1.5 or a cluster of M>1.2 10¹⁵ M_{sun} (like SPT-CL J2106) in 1.5<z<2 V Cortesy Lauro Moscardini

Waizmann et al. 2011, 2012

Conclusions (1)

Clusters of galaxies: A secondary Cosmological Probe complementary to primary Probes: WL shear maps and Galaxy Clustering to constrain Dark Energy equation of state and test our theory of gravity.

➤Main challenge will be to control the selection function of the cluster catalog and the calibration of the mass-proxy relation and its scattering.

-- Large number of clusters: accurate determination of cluster clustering

-- CC + WL mass estimates + multi-wavelength proxies + spectroscopic follow-up for part of the data should provide an efficient Self-Calibration

Conclusions (2)

≻A lot of work ongoing in the SWG and OU-LE3 WPs:

Cosmological forecasts, Constraints on non gaussianity of primordial fluctuations, on neutrinos ...

Cluster challenge for comparing cluster finders, selection functions and massproxies...

Besides the cosmological aspects, Euclid data combined to other wavelength experiments will strongly improve our knowlege of physical processes at work in clusters, and the interplay between galaxies and gas.

Thanks!

Galaxy clusters w/ Euclid and Planck, and other

Hervé Dole

Institut d'Astrophysique Spatiale, Orsay, France Université Paris Sud & CNRS Institut Universitaire de France http://www.ias.u-psud.fr/dole/

these z>1.5 clusters candidates contain luminous FIR galaxies: clusters in their burst phase ?

Hervé Dole, IAS - Clusters: High-z w/ Planck - Euclid France - IAP - Dec 5th, 2013

Dole et al., in prep ³²

high-z massive clusters: likely very rare on the sky. Need for all-sky surveys, à la Planck & Euclid to complement deep searches.

Brodwin et al, 2012 Mortolasón et al., 2014 High-z w/ Planck - Euclid France - IAP - Dec 5th, 2013

a remarkable dataset: 200+ Planck/

High-z w/ Planck - Euclid France - IAP - Dec 5th, 2013

the case of XMMU J0044.0-2033

we serendipitously found this source, slightly off our main target. And it appears to be...

Hervé Dole, IAS - Clusters: High-z w/ Planck - Euclid France - IAP - Dec 5th, 2013

Dole et al., in prep ³⁶

the case of XMMU J0044.0-2033

Discovery of a massive X-ray luminous galaxy cluster at $z = 1.579^*$

J. S. Santos¹, R. Fassbender², A. Nastasi², H. Böhringer², P. Rosati³, R. Šuhada², D. Pierini^{2,**}, M. Nonino⁴, M. Mühlegger², H. Quintana⁵, A. D. Schwope⁶, G. Lamer⁶, A. de Hoon⁶, and V. Strazzullo⁷

another good candidate using IRAC

Figure 10. A high-z cluster cand date observed by *Planck*, Herschel, and here Spitzer-IRAC ($3.5' \times 2.3'$). Left: IRAC channel 2 ($4.5 \mu m$) with SPIRE 350 μm cortour. Right: color image of the 4.5/3.6 color ratio, showing the red color of the sources within the

cluster candidate.

Hervé Dole, IAS -High-z w/ Planck France - IAP - Dec 5th, 2013

...and Euclid in the future over the whole sky

Dole et al., in prep ³⁸