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WL peak counts

• Number of peaks in weak-
lensing maps, as function of 
S/N, z

• High-density regions → 
measure of non-Gaussianity 
of LSS

• First-order in ellipticity

• Not (yet?) a Euclid 
requirement, but increa-
singly active
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WL peak counts
• Complementary to power

spectrum (2pt cosmic shear),
new information on cosmology

Kilbinger Part B2 COLOSSUS 
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structure add to the lensing peak signal. This sub-project of COLOSSUS has a strong link to part A, and will 
use the new intrinsic alignment model established in A.II.3. This model will be applied to the galaxies 
populating the FLeSH simulations. 
 
After finalizing all these previous steps, the method of interpreting weak-lensing peak counts is ready to be 
used on the observational data that was described at the end of part A.II. 
 
Final goal B: A measurement of weak-lensing peak counts in CFHTLenS and KiDS to obtain cosmological 
constraints using FLeSH-generated theoretical predictions. 
Figure 3 shows the predicted breaking of parameter degeneracies when peak counts are added to 
second-order lensing statistics. The lifting of the degeneracy between Ωm and σ8 also reduces degeneracies 
with other parameters. Measured of dark energy and primordial non-Gaussianity will be made with 
unprecedented precision from weak lensing. 
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Peak count prediction:
Models can be distinguished

at 90% confidence

CFHTLenS data:
Models within 68%
confidence region, indistinguishable
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Novel and unconventional aspects (part B) 
The research of this part of COLOSSUS will be an inter-disciplinary effort, joining the fields of cosmology, 
mathematics, and computer science. The problem of how to interpret the lensing peak counts in a 
cosmological framework is not yet solved and represents a big challenge. This will be tackled in 
collaboration with mathematicians, by researching and developing advanced statistical methods. Further, the 
ability of extracting the optimal signal from weak-lensing catalogues or maps will be a decisive factor of the 
success of COLOSSUS. To solve this problem, techniques from computer science, in particular remote 
sensing and image processing have to be studied and applied to this cosmological problem. A novel aspect of 
this part is to run simulations on the fly for parameter estimation during a Monte-Carlo sampling run. 
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Figure 2: The blue contours show the 68%, 95% and 
99.7% confidence intervals from CFHTLenS data 
[K+12] for the matter density Ωm and the density 
power-spectrum normalization σ8, all other 
parameters have been fixed. The red and black points 
correspond to models, which are expected to be 
discriminated at 90% confidence using weak-lensing 
peak counts [PLS12]. In particular, the degeneracy 
between the three black point models can be lifted, 
which are indistinguishable from second-order 
statistics alone. 
 Data (blue): Kilbinger et al. 2012

Prediction (black): adopted from Pires, 
Leonard & Starck 2012
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Figure 5. Comparison of the cosmic-shear tomography con-
fidence intervals (orange/red) with the full peak information
making use of the combined M and S statistics (blue). Shown
in green with black outlines is the combination of cosmic-shear
and peak statistics. Again, 1- and 2σ intervals are shown in
all cases.

dence region of the full peak statistics ζp is well aligned
with the confidence region of cosmic shear tomogra-
phy. However, as Table 2 shows, the combined statis-

tics ζ = (ζp
t, ξ̂cs

t
)t still gives significantly improved con-

straints; it has a FoM that is about 40% larger than that
of cosmic shear tomography alone.

3.4 Stability of the constraints

As mentioned in Sect. 2.4, the estimated inverse covari-
ance becomes singular if d > n − 1, and the length of
the data vectors is consequentially limited by the number
of ray-tracing simulations at the fiducial cosmology. The
combined statistics vector ζ is 75-dimensional, which is
comparable to the number of simulations n = 175. Even
though we can obtain an unbiased estimate of the inverse
covariance, this estimate is potentially very noisy.

We estimate the effect of noise due to the finite num-
ber simulations on the constraints derived in the pre-
vious section by we creating 1000 bootstrap-like sam-

Figure 6. Variation of the constraints when bootstrapping
the covariance matrix. The white contour line shows the 95%
confidence interval of the combined peak and cosmic shear
statistics from Fig. 5. Shaded areas mark the regions inside
the bootstrapped 95% confidence interval for x percent of the
resamplings, where x is 100 (black), 99 (red), cyan(95), and
blue (68).

ples from our set of simulations for the fiducial cosmol-
ogy. Each sample is constructed by randomly drawing
n = 175 ray-tracing realisations with replacement. The
covariance matrix is estimated for each of the samples.
In doing so we kept track how many independent simu-
lations n entered the estimation of the inverse covariance
matrix in Eq. (12). At the same time we ensured that we
had enough independent simulations to estimate C

−1. Fi-
nally, we computed the corresponding confidence regions
as described before. While not statistically rigorous, this
scheme nevertheless illustrates that the confidence inter-
vals are stable with respect to the set of simulations used.
Figure 6 shows the variation of the area inside this confi-
dence interval and illustrates that the dependence on the
simulations entering the computation of the covariance
matrix is small compared to the size of the confidence
region.

We have also compared the confidence regions ob-
tained using the fitting functions of Appendix A for the
function M with the constraints computed using the in-
terpolation method described in Section 3.1. While in-
terpolating between simulations for different cosmologies
is noisy, the results using the fitting function might be
affected by accuracy and choice of the fitting functions.
However, we do not find significant differences between
the two methods.
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Table 1. Figures of Merit of different parameters of the S

function.

fmin fmax nbin σmin FoM

0.50 0.98 5 3.2 48
0.50 0.98 5 4.0 7
0.08 0.98 10 3.2 48
0.08 0.50 5 3.2 34

gain of the tomographic peak statistics does not come
from the deprojection of structures along the LOS but
from localising peaks along the redshift axis, i.e., from
the combination of the S and M statistics.

We also tested several choices of fmin and fmax and
the number of bins; Table 1 gives an overview of various
settings. Extending fmin to lower values adds almost no
information, even if the number of bins is increased to
preserve the information in the high SNR bins. For ex-
ample, decreasing fmin = 0.08 and setting nbin = 10 does
not improve the FoM. The information content of the S

function is slightly higher with these settings, as is evi-
denced by a 3% decrease of the area inside the 68% con-
fidence interval. However, the 95% confidence contours
within the support of our prior are not tightened.

Despite of this, most of the information is contained
in the low SNR regime, as can be seen from the last two
rows of Table 1. This information, however, can be re-
covered with only one or two bins: Figure 2 shows that
the low SNR end of the cumulative distribution function
has an almost constant slope. This slope is completely
determined by the SNR sampled at fmin and the point
(σmin, 0), and explains why adding more points at the
low end does not increase the FoM. Further information
comes only from the shape of the curve in the interme-
diate SNR range. At the high SNR end the cumulative
distribution again has a constant slope and is fully char-
acterized by the last two sample points.

3.3 Combination with cosmic shear

Up to now cosmological information has generally been
extracted from lensing surveys via the cosmic-shear two-
point correlation functions (2PCF) (e.g., Schneider 2006),

ξ̂±(θ) = 〈εt(θ)εt(θ + ϑ)〉± 〈ε×(θ)ε×(θ + ϑ)〉 , (13)

which are related to the convergence power spectrum Pκ

via (e.g., Kaiser 1992)

ξ+(θ) =

Z ∞

0

dl
2π

J0(lθ)Pκ(l) (14)

ξ−(θ) =

Z ∞

0

dl
2π

J4(lθ)Pκ(l) (15)

Here ε× is the cross-component of the ellipticity and
the Jn(x) are the n-th Bessel functions of the first
kind. Surveys using this method have led to in-
creasingly tight constraints in the Ωm-σ8 plane (e.g.,
Jarvis et al. 2006; Semboloni et al. 2006; Hoekstra et al.
2006; Hetterscheidt et al. 2007; Benjamin et al. 2007;
Fu et al. 2008). However, the cosmic shear 2PCF de-
scribes the underlying density fluctuations only com-

Table 2. Cosmological constraints using different statistics.

Type Ωm σ8 FoM

Cosmic shear 0.291+0.117
−0.091 0.756+0.155

−0.160 71

Peak statistics 0.273+0.063
−0.053 0.776+0.107

−0.096 123

Combined 0.275+0.057
−0.051 0.774+0.095

−0.087 173

pletely if they are purely Gaussian. Cosmic shear can ac-
cess information about the non-Gaussianity of the matter
distribution only through higher-order correlation func-
tions (see e.g., Takada & Jain 2003, for constraints using
the three-point correlation function). The peak statistics
on the other hand is most sensitive to extreme overdensi-
ties along the LOS, i.e., to those structures that contain
most information about non-Gaussianity. It is thus rea-
sonable to assume that both statistics are not completely
degenerate and that combining the two does not sim-
ply amount to using the same information twice. This
expectation is supported by a number of studies look-
ing at the constraints one can place on the Dark Energy
equation of state by combining the cluster mass func-
tion with other cosmological probes, including weak grav-
itational lensing (Fang & Haiman 2007; Takada & Bridle
2007; Cunha et al. 2009). Takada & Bridle (2007) in par-
ticular examined the full cross-covariance between the
cosmic shear 2PCF and cluster counts of shear-selected
halos and found that the combination of both methods
leads to tighter constraints than either method alone can
provide.

Cosmic shear, like the peak statistics, can greatly
benefit from the inclusion of redshift information by fol-
lowing the evolution of structure with time (Hu 1999;
Bacon et al. 2005). This is done by dividing the galaxy
sample into redshift bins and computing their auto- and
cross-correlation functions,

ξ̂(ij)
± (θ) = 〈ε(i)t (θ)ε(j)t (θ+ϑ)〉±〈ε(i)× (θ)ε(j)× (θ+ϑ)〉 . (16)

We used this tomographic 2PCF to compare and combine
the constraints obtained from cosmic shear to those from
the peak statistics in the same survey.

We split the galaxy catalogue into two redshift bins,
separated at redshift z = 0.6 and estimated the to-
mographic cosmic shear 2PCF ξ(ij)

± in our simulation
of the fiducial cosmology for 60 logarithmically spaced
intervals from 30′′ to 6◦. From this we constructed
data vectors by averaging the values of 6 consecutive
bins into one entry in the data vector, so that we
have a 60-dimensional cosmic shear data vector ζcs =
(ξ̂(11)

+ , ξ̂(11)
−

, ξ̂(12)
+ , ξ̂(12)

−

, ξ̂(22)
+ , ξ̂(22)

−

)t. Using these vec-
tors we computed the covariance of our cosmic shear mea-
surements at the fiducial cosmology. The choice of red-
shift and spatial bins was motivated by the limited num-
ber of independent realisations of our fiducial cosmology,
which limits the dimensionality of the data vector.

We predicted the cosmic shear signal on a grid
in our parameter space using the transfer function of
Eisenstein & Hu (1998) and the non-linear power spec-
trum of Peacock & Dodds (1996). Figure 5 shows a com-
parison of constraints obtained using the cosmic shear
2PCF and the he M and S peak statistics. The confi-
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WL peak counts
• Difficult to build theoretical model:

- WL peaks strongly contaminated by noise (up-
scatter to higher S/N)

- LSS projections along line of sight

• Existing models based on Gaussian random fields 
(Maturi et al. 2009, 2011; Fan et al. 2010)

- Good enough for large S/N?

- Work for non-linearly re-
constructed κ maps?

- Inclusion of observational effects
(PSF, masks, ...) and astrophysics
(intrinsic alignment)?

– 30 –

Fig. 5.— Fig.5a (left panel): The cumulative number distribution of noise peaks in the
area within Rc < R ≤ 5Rc. The solid, dash-dotted and dashed lines are for the isothermal,

NFW, and the pure noise cases, respectively. The diamond and the plus symbols are for
the average results from our Monte Carlo simulations of the isothermal cluster and of the

NFW cluster, respectively. Fig.5b (right panel): The ratio f = Npeak/Nran in the area within
Rc < R ≤ 5Rc. The solid and the dash-dotted lines are for the isothermal and NFW clusters,
respectively. The cluster parameters are the same as those in Figure 2.

Fig. 6.— The ratio f = Npeak/Nran in the area within Rc < R ≤ 5Rc. Fig.6a (left panel) is
for the isothermal cluster, and Fig.6b (right panel) is for the NFW cluster. In each panel,
the solid, dash-dotted and dashed lines are for the results with different treatments of the

mass-sheet degeneracy, specifically, with true cluster mass distribution, with < κ >= 0 in
the ring at 5Rc, and with < κ >= 0 within 5Rc, respectively. The cluster parameters are

the same as those in Figure 2.

Fan et al. 2010
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WL peak counts
• Idea: Fast LEnsing Simulations of Halos (FLESH), 

contains peaks but no (or low-order) clustering.

• Compare to
full N-body sims.

3m2m1m
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Higher-order stats
• Bispectrum: Sensitive to filamentary structure and 

halos depending on scale and triangle configuration

CDM paradigm
Bispectrum: Probing the filamentary structure on
large scales

θ k−1
2

k−1
1

VIRGO consortium
Cosmological Parameters from 2nd and 3rd Order Cosmic Shear Statistics – p.7/17

CDM paradigm
Bispectrum: Probing the filamentary structure on
large scales

θ
k−1

1

k−1
2

VIRGO consortium
Cosmological Parameters from 2nd and 3rd Order Cosmic Shear Statistics – p.7/17

CDM paradigm
Bispectrum: Probing halos on small scales

VIRGO consortium
Cosmological Parameters from 2nd and 3rd Order Cosmic Shear Statistics – p.7/17
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Higher-order stats
• Complementary information wrt two-point stats

• Ongoing work: estimators, astrophysical 
contaminations (intrinsic alignment, source-lens 
clustering)

• Much to do: theoretical predictions, covariance, ...

CFHTLenS: cosmic shear two-point and three-point correlation 11
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Figure 7.Marginalised posterior density contours (68.3%, 95.5%,
99.9%) for Ωm and σ8 from CFHTLenS. Second-order statistics
(magenta contours) are the aperture-mass dispersion (top panel)
and the COSEBIs (bottom). The blue contours correspond to
the generalised aperture-mass skewness. Both second- and third-
order measures are combined to yield joint constraints (green).
The model is flat ΛCDM.

statistics, since they are proportional to the convergence
bispectrum. They are however of more importance for the
third-order functions: Both cosmic shear, for common mod-
els such as perturbation theory or HEPT, and SLC de-
pend on terms that are proportional to the power spec-
trum squared. Inserting that additional convergence term
into (10) yields the SLC contribution to the aperture-mass,

M slc
ap (θ,ϑ) =

∫
d2ϑ′ Uθ(|ϑ− ϑ′|)

×
∫ wlim

0

dw p̄(w)b(w)δ(ϑ, w)κ(ϑ, w). (37)

Note that we are not estimating the aperture-mass
skewness from local measures of Map, for example by plac-
ing apertures over the survey and then computing the third
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curved ΛCDM
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Figure 8.Marginalised posterior density contours (68.3%, 95.5%,
99.9%) for Ωm and σ8 from CFHTLenS. Second-order mea-
sures (magenta curves) and third-order generalised aperture-mass
(blue) are combined to yield joint constraints (green). A flat
wCDM Universe in used the top panel, and a curved ΛCDM
model in the bottom panel.

moment of that distribution. Instead, we integrate over the
3PCF, which has been globally computed by averaging over
all galaxy triples. Any local estimator would need to be
normalised by the number of galaxies in that region, e.g.
the aperture disk. That would include the SLC-corrected
p(w,θ), partly off-setting the SLC contribution. In a pertur-
bative ansatz, this is represented by two contributing terms
with opposite signs (Bernardeau 1998). Our global estima-
tors of the 3PCF (8, 9) are instead normalised by the number
of galaxy triples over the whole survey. The SLC correction
to that is very small compared to the expectation value of
the unperturbed number of triples. Therefore, we can safely
neglect this contribution Valageas (2013).

We write the total aperture-mass asM tot
ap = Map+M slc

ap ,
and expand the skewness up to linear terms in the SLC

c© 2009 RAS, MNRAS 000, 1–16
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Two-point stats

Cosmological Constraints from Cosmic Shear 
in CFHTLenS

Abstract
We present constraints on cosmological parameters from weak gravitational 
lensing by the large-scale structure. Using multi-band optical data over 155 
square degrees of the CFHTLenS survey, we measure the shear correlation out 
to very large, linear scales. We sample the parameter space using Population 
Monte Carlo (PMC), and obtain robust constraints on LCDM  parameters.

E- and B-mode
To first order, the cosmological shear field is curl-free, and shows a pure 
gradient or ‘E-mode’ (the green patterns in Fig. 1).  The curl or B-mode’ (red 
patterns) is expected to vanish, and can be used as a test for residual 
systematics in the data. The aperture-mass dispersion separates the two 
modes. Indeed, the B-mode is consistent with zero between 1 and 230 arcmin 
(Fig. 1, left panel).

Shear correlation functions
The full second-order information of the cosmological weak lensing signal in 
real space is contained in the shear two-point correlation functions (2PCF):

They are measured by averaging over the shape correlations of pairs of galaxies 
at a given angular distance ϑ. Both the tangential and cross-component of 
shear are considered. We measure the 2PCF from 0.9 to 331 arcmin (Fig.2).

References
• Harnois-Deraps, Vafaei, Van Waerbeke, 2012 (in prep.)
• Kilbinger & Schneider, 2004, A&A, 413, 465
• Kilbinger et al. 2011,  arXiv:1101.0950, www.cosmopmc.info
• Sato et al. 2011, ApJ, 734, 76

Weak
lens-
ing
and
cosmologyWeak lensing and cosmology Second-order cosmic shear statistics

Second-order statistics

• Correlation of the shear at two points yields four quantities

γtγt < 0

> 0 < 0

〈

γtγ×
〉

,
〈

γ×γt

〉

〈

γ×γ×
〉

〈γtγt〉

• Parity conservation �⇥ ⇤�t�⇥⌅ = ⇤�⇥�t⌅ = 0
• Shear two-point correlation function (2PCF)

⇥+(⇤) = ⇤�t�t⌅ (⇤) + ⇤�⇥�⇥⌅ (⇤)
⇥�(⇤) = ⇤�t�t⌅ (⇤)� ⇤�⇥�⇥⌅ (⇤)
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Alignment of galaxies:

Decompose shear ! 
into tangential t and 
cross-component x

Shear two-point correlation functions:Weak
lens-
ing
and
cosmologyWeak lensing and cosmology Second-order cosmic shear statistics

Separating the E- and B-mode

E mode

B mode

mass
trough

mass
peak

E mode

B mode

mass
trough

mass
peak

• Local measure for E- and B-mode: �M2
ap⇥

• Remember: Map(⇥) =
�

d2⇤ Q�(⇤)�t(�).
• Define: M�(⇥) =

�
d2⇤ Q�(⇤)��(�).

• Dispersion �M2
�⇥ is only sensitive to B-mode, i.e., vanishes if there

is no B-mode.
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Grav. lensing produces only E-mode pattern (to first order)

= projections of P"(k)

Wednesday, March 16, 2011

Covariance
We calculate the covariance of the data as follows:

• Gaussian part on large scales: Kilbinger & Schneider (2004), taking into 
account the CFHTLenS survey geometry and masks

• Non-Gaussian correction on small scales: Fitting formula of Sato et al. 
(2011), calibrated with simulations

We check the accuracy of this approach by comparing to N-body and ray-
tracing simulations, created for CFHTLenS (Harnoid-Deraps et al. 2012). From 
these simulations, we create a ‘Clone’ of the CFHTLenS data with the same 

galaxy redshift distribution, masks and noise properties. The agreement is good 
on scales > 1 arcmin (Fig. 3).

Parameter constraints
By comparing the measured shear correlations (Fig. 4) to theoretical 
predictions of the large-scale structure, we obtain constraints on cosmological 
parameters. The multi-dimensional parameter space is sampled using 
Population Monte Carlo (PMC), implemented in the free software 
cosmo_pmc (Kilbinger et al. 2011).

Assuming a flat ΛCDM Universe, CFHTLenS together with WMAP7 constrain 
Ωm to 4% and, σ8 to 2% (at 68.3% confidence). Dropping flatness, the error 
bars double (Table 1).

M. Kilbinger1, CFHTLenS Collaboration2

1-CEA Saclay, AIM/SAp, F-91191 Gif-sur-Yvette, France
2-www.cfhtlens.org
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Fig. 2. Shear correlations 
measured in CFHTLenS, and 
best-fit ΛCDM model.

Fig. 3. Diagonal of the 
covariance. of ξ+. The 
non-Gaussian correction 
matches the ‘cloned’ 
CFHTLenS simulation. 

ΩK=0 (flat) Free curvature 

Parameter Mean±68.3%cl.

Ωm 0.257± 0.011
σ8 0.797± 0.014
Ωb 0.0440± 0.0011
h 0.716+0.014

−0.013

ns 0.966± 0.013

Parameter Mean±68.3%cl.

Ωm 0.254+0.019
−0.018

σ8 0.804+0.031
−0.025

Ωb 0.0430+0.0043
−0.0038

h 0.725+0.034
−0.037

ns 0.965+0.014
−0.013

Ωde 0.744± 0.010

Table 1. Mean and 68.3% confidence intervals for ΛCDM, 
with zero (left) and free curvature (right).

Fig.1. Left: E- and B-modes 
measured in CFHTLenS. 
Right: typical E- and B-mode 
shear patterns. 
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Fig. 4. Constraints (68.3%, 95.5%) on the matter density Ωm 
and the amplitude of density fluctuations σ8. Left: flat 
model. Right: model with a free curvature parameter.
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Euclid main WL requirement:
Real space: Tomographic shear two-point correlation function
Fourier space: Tomographic shear power-spectrum

Real space
Fu et al. 2008
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Two-point stats
Euclid main WL requirement:
Real space: Tomographic shear two-point correlation function
Fourier space: Tomographic shear power-spectrum

Fourier space

Dark Energy 35

100 1000 10000
Multipole l

10-6

10-5

10-4

l(l
+1

) P
κ l / 

(2
π)

first bin

second bin

Solid: w=-1.0
Dashed: w=-0.9

cross term

Figure 15: Cosmic shear angular power spectrum and statistical errors expected
for LSST (see §8) for w = −1 and −0.9. For illustration, results are shown for
source galaxies in two broad redshift bins, zs = 0 − 1 (first bin) and zs = 1 − 3
(second bin); the cross-power spectrum between the two bins (cross term) is
shown without the statistical errors.

with their neighbors — or to align with the local mass distribution — can be con-
fused with alignments caused by gravitational lensing, thus biasing dark energy
determinations (Heymans et al. 2006, Hirata & Seljak 2004). Finally, uncer-
tainties in the theoretical mass power spectrum on small scales could complicate
attempts to use the high-multipole (! ! several hundred) shear power spectrum
to constrain dark energy. Fortunately, weak lensing surveys should be able to
internally constrain the impact of such effects (Zentner, Rudd & Hu 2007).

7.5 Other probes

While the four methods discussed above have the most probative power, a num-
ber of other methods have been proposed, offering the possibility of additional
consistency checks. The Alcock-Paczynski test exploits the fact that the apparent
shapes of intrinsically spherical cosmic structures depend on cosmology (Alcock &
Paczynski 1979). Since spatial clustering is statistically isotropic, the anisotropy
of the two-point correlation function along and transverse to the line of sight has
been proposed for this test, e.g., using the Lyman-alpha forest (Hui, Stebbins &
Burles 1999).

Weak lensing of the CMB anisotropy by foreground clusters, in combination
with lensing of galaxies, provides a potential geometric probe of dark energy (e.g.,
Hu, Holz & Vale 2007).

The Integrated Sachs-Wolfe (ISW) effect provided a confirmation of cosmic
acceleration, cf. §4.1.2. ISW impacts the large-angle structure of the CMB
anisotropy, but low-! multipoles are subject to large cosmic variance, limiting
their power. Nevertheless, ISW is of interest because it may be able to show the
imprint of large-scale dark-energy perturbations (Coble, Dodelson & Frieman
1997; Hu & Scranton 2004).

Frieman, Turner & Huterer 2008
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Two-point stats
• Validation of 2pt algorithms

- First stage: Log-Normal random fields with known 
input power spectrum (Benjamin Joachimi [UCL], 
Reiko Nakajima [AIfA Bonn])

- Results to be discussed at Nice OU-LE3 meeting 
(December 2013)

OU-SHE                             OU-LE3                              WLWG
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Two-point stats
• Real-space two-point correlation function:

Direct, unbiased estimator
from data

• Power spectrum:

- 1D-FT of 2pcf

- 2D-FT of the γ or κ, e.g.
Pseudo-Cl’s, maximum-
likelihood

- Many methods for γ → κ (FFT, Kaiser & Squires, 
Seitz & Schneider, inpainting, Wavelet-
Helmholtz, ...)

!
!

!
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Two-point stats

www.cosmostat.org/athena
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Two-point stats
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E- to B-mode leakage due 
lack of small-scale information

(galaxies on grid, Δ = 6’)

Band-power spectrum (pallas/athena)
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Two-point stat
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v1.2: galaxies on grid, Δ = 6’ v1.3: random galaxy positions
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Band-power spectrum (pallas/athena)
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Two-point statsNon-Gaussian low 
noise

Wednesday, 4 December 13

Non-Gaussian high 
noise

Wednesday, 4 December 13

low noise high noise

Sreekumar Balan (UCL), full-sky power spectrum,
Bayesian method. More at the Nice meeting...

Log-normal random field

preliminary
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Shape measurement

Euclid WL SWG/SHE Meeting - Rome - 22-25th Oct 2013

Four-Fold Way:

Shear and shape measurement

Model-Fit                   Moments

Bayesian

Frequentist

Armstrong-Bernstein
Lensfit

“Shearfit”

im3shape
MCMC
PCA

KSB
Deimos
FDNT

MegaLUT
TVNN

Tuesday, 22 October 13

from Andy Taylor
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Shape measurement

from Andy Taylor

Euclid WL SWG/SHE Meeting - Rome - 22-25th Oct 2013

With a sufficiently good calibration set any method can 
be calibrated to meet Euclid Requirements.

Needs calibration/priors for p(e), p(size), p(galaxy morph), 
p(PSF), p(colours), p(CTI)...

But will fail if method requires:
- too large a calibration set (large N).  
- too accurate a calibration set (high-res, wide range).  

Need methods which are sufficiently insensitive to 
calibration or priors. 

OU-SHE

Tuesday, 22 October 13
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Shape measurement

Euclid WL SWG/SHE Meeting - Rome - 22-25th Oct 2013

Where does calibration set or priors come from?

Image Simulations.

But what are simulations based on?

Deep HST Calibration images and ultimately Euclid Deep. 

Need methods which are sufficiently insensitive to 
calibration or priors. 

Viola, Kitching, Joachimi shown for simple moment-based.

Need analysis + test on simulations for all approaches 
- SHE Challenge for 2014!

OU-SHE

Tuesday, 22 October 13

from Andy Taylor
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