EUCLID photometric redshifts OU-PHZ

lead: S. Paltani - ISDC/CH

53 members

French members:

- S. Arnouts, V. Beckman, S. Charlot, Y. Giraud-Héraud,
- O. Ilbert, H.J. McCracken, T. Moutard, R. Pelló, M. Sauvage

Olivier Ilbert - LAM

Context

- 2 billions of sources in photometry
- > Need the photometric redshifts to define the weak lensing tomographic bins

OU-PHZ: develop the codes to compute photo-z from the multi-wavelength catalogues assembled by OU-EXT and OU-MER

· Photo-z algorithms

Various photo-z codes in the OU

- template-fitting
 le Phare, Hyperz, Zebra, BPZ, Eazy
- empirical methodsANNz, gaussian processes

Test bench to run the various photo-z codes and test them (N. Fourmanoit)

Template fitting method

PHotometric Analysis for Redshift Estimations Stephane ARNOUTS & Olivier ILBERT

Last UPDATE: version from April 09

Goal:

Le PHARE is a set of fortran commands to compute photometric redshifts and to perform SED

fitting. The last version includes new features with F of physical parameters and uncertainties based on F synthesis models.

(resp: R. Pelló)

(resp: S. Arnouts)

Work package - SEDs

Provide empirical (resp: O. Ilbert) and modeled SEDs (resp: S. Charlot)

Main ingredient for template-fitting methods

Work package - physical parameters

Measure the physical parameters for the photo-z sample, e.g. stellar masses, SFR

> for Galaxy Evolution SWG

Resp: C. Maraston
Strong french contribution:
Arnouts, Charlot, Ilbert, Moutard

Same codes as for template-fitting

Bias and failure analysis

Resp: O. Ilbert

Participants: F. Abdalla, M. Bolzonella, P. Capak, A. Choi, J. Coupon, H. Hildebrandt, S. Jouvel, T. Moutard, R. Pello, F. Raison

Characterize the precision, the fraction of catastrophic failures that we get on the photo-z and the mean redshift of each photo-z subsample.

- > check that we respect the requirements
- > "a posteriori" treatment if necessary

Requirements

Requirements on the precision of the photo-z for the weak-lensing sample (mag_{RIZ}< 24.5, 0.2<z<2)

Precision: $\sigma_{(zp-zs)/(1+zs)}=0.05$ (required) 0.03 (goal) Catastrophic failures: 10% (required) 5% (goal)

Reg. ID	Parameter	Requirement	Goal
WL.1-5	Redshifts error $(\sigma(z)/(1+z))$	≤ 0.05	≤ 0.03
WL.1-6	Catastrophic failures	10%	5%
WL.1-7	Error in mean redshift in bin	<0.002	

capacity to well define the tomographic bins

EUCLID combined with ground based optical data

5σ sensitivity in NIR

YAB=24, JAB=24, HAB=24

South:

DES - 5000 deg²

100 sensitivity

g=24.6 r=24.1 i=24.0 z=23.9

North:

CFHT, Pan-STARRS, HSC, LSST

Test the EUCLID photo-z accuracy using real data

Numerous studies already tackle this problem with

simulations

Degrade the observed COSMOS magnitudes to get DES sensitivity

Deep and large spec-z samples to estimate the photo-z accuracy

Use only the spec-z with a confidence level >97%

> not a random selection of the weak lensing sample

Depth of the optical data crucial to meet the requirements

Test with COSMOS data degraded to DES

Depth of the optical data crucial to meet the requirements

Test with COSMOS data degraded to DES

could add additional cleaning based on the PDF

Requirements on the mean redshift

to insure an uncertainty below 1% on w, we need to determine <z> better than 0.2(1+z)%.

Req. ID	Parameter	Requirement	Goal
WL.1-5	Redshifts error $(\sigma(z)/(1+z))$	≤ 0.05	≤ 0.03
WL.1-6	Catastrophic failures	10%	5%
WL.1-7	Error in mean redshift in bin	<0.002	

any uncertainties on the templates, relative calibration of the photometry tile-to-tile, etc create a bias >>0.2% in the photo-z

> can not use the photo-z directly

Possible solutions to get the mean redshift at 0.2%

- 1.Brute force: organize a spectroscopic follow-up of a representative I<24.5 sample to get the exact redshift distribution. Need to beat the cosmic variance, acquire a representative spec-z sample
- 2.Use the spatial information, as Newmann 2008. A. Choi and H. Hildebrandt test it on CFHTLens
- •3. Use a spec-z sample to define the bias and correct the photo-z or the PDF(z).
 - > Bordoloi method 2010 and 2012

Correct the bias using the spec-z

Conclusions

- 1. Strong french implication in template-fitting methods for photo-z and physical parameters
- 2. Possible to get the mean redshift at 0.2% by correcting the photo-z bias or using the spatial information
- 3. DES is the minimum survey sensitivity to reach the requirements on the precision and failure rate

Next steps:

- * data challenge with a catalogue produced by OU-MER based on CANDELS GOODS-S
- * DES data taken in the COSMOS field