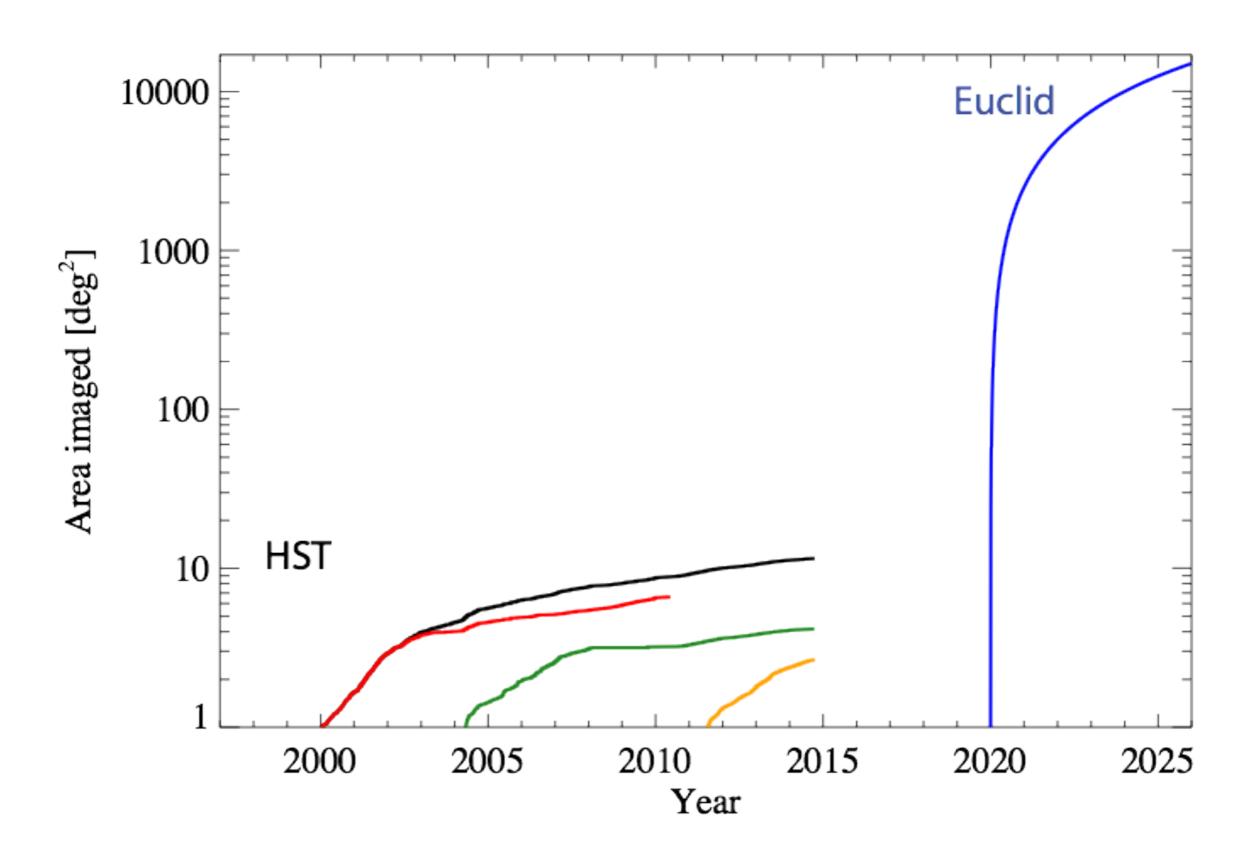
Euclid Legacy Science


Simona Mei GEPI – Observatory of Paris – University of Paris 7 Denis Diderot

on the basis of the work of legacy coordinators and EC members, and using information from Jarle Brinchmann

The importance of legacy science

- Easy to use/access for the general astronomers leads to major and lasting impact (e.g. POSS, IRAS, SDSS, H(U)DF).
- Early in the mission legacy will be the main conduit of scientific results and will be responsible for the image of the mission.
- The number of legacy science papers is likely to significantly exceed that of cosmology papers.
- With a good data archive and a survey that as far as possible optimises for legacy science Euclid will likely be a cornerstone of extra-galactic astronomy for a decade or more

The leap in high resolution imaging

Euclid legacy in numbers

What	Euclid	Before Euclid	
Galaxies at 1 <z<3 estimates<="" good="" mass="" td="" with=""><td>~2x10⁸</td><td colspan="2">~5x10⁶</td></z<3>	~2x10 ⁸	~5x10 ⁶	
Massive galaxies (1 <z<3) spectra<="" td="" w=""><td>~few x 10³</td><td colspan="2">~few tens</td></z<3)>	~few x 10 ³	~few tens	
Hα emitters/metal abundance in z~2-3	~4x10 ⁷ /10 ⁴	~104/~102?	
Galaxies in massive clusters at z>1	~2x10 ⁴	~10 ³ ?	
Type 2 AGN (0.7 <z<2)< td=""><td>~104</td><td colspan="2"><10³</td></z<2)<>	~104	<10 ³	
Dwarf galaxies	~10 ⁵		
T _{eff} ~400K Y dwarfs	~few 10 ²	<10	
Strongly lensed galaxy-scale lenses	~300,000	~10-100	
z > 8 QSOs	~30	None	

Legacy Science Working Groups

Extra-solar planets

Lead: Beaulieau, Zapatero-Osorio, Kerins

Milky Way and Resolved Stellar Pops

Lead: Tolstoy, Ferguson

Local Universe

Lead: Poggianti, Warren

Galaxies and AGN

Lead: Elbaz, Cimatti, Brinchmann

Primeval Universe

Lead: Cuby, Finbo

Clusters of Galaxies

Lead: Weller, Moscardini, Bartlett

Supernovae and transients

Lead: Tao, Hook, Cappellaro

Strong lensing

Lead: Kneib, Meneghetti

CMB Cross-correlations

Lead: Agnanim, Baccicalupi

Cosmological Theory

Lead: Amendola, Kunz

Cosmological simulations

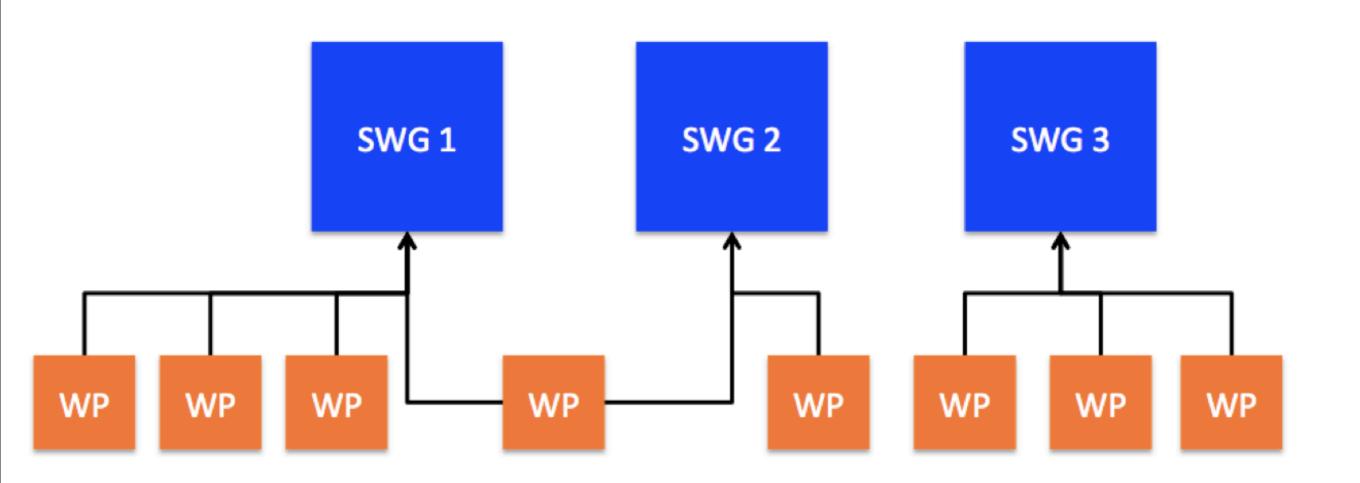
Lead: Fosalba Teyssier

General progress from last year

- Reorganization of the SWG work package structure.
 This has not been completed, and the idea is to have a more uniform work package structure.
- The discussion of choice of grisms for the spectroscopic survey, described by a document lead by Andrea Cimatti

Report on science cases and optimization of the new NISP grism

Ref. EUCL-UBO-RP-8-001


Version: 0.1 Date: 01/

Date: 01/03/14 Page: 1/14

General progress from last year

• From ESAs side there has been an effort to start setting up a working group on solar system science. This is not currently integrated into the legacy SWGs but should be at some point. See Bruno Altieri's presentation from the last Garage Days: http://wiki.cosmos.esa.int/euclid/ index.php20141016 Paris#Transient phenomenas with Euclid

Reorganization of the working packages

The discussion of choice of grisms

Configuration	Grisms	Position angles (PA)	Integratio n time (s)	Survey
Red Book Baseline	2 blue (1.10-1.45 μm) 0.68 <z(hα)<1.21< th=""><th>0°, 90°</th><th>2 x 565</th><th>Wide and Deep</th></z(hα)<1.21<>	0°, 90°	2 x 565	Wide and Deep
	2 red (1.45-2.0 μm) 1.21 <z(hα)<2.05< th=""><th>0°, 90°</th><th>2 x 565</th><th>Wide and Deep</th></z(hα)<2.05<>	0°, 90°	2 x 565	Wide and Deep
3R + 1B	1 blue (TBD μm) TBD <z(hα)<tbd< th=""><th>TBD</th><th>1 x 565</th><th>Deep only</th></z(hα)<tbd<>	TBD	1 x 565	Deep only
	3 red (1.25-1.8 μm) 0.90 <z(hα)<1.74< th=""><th>PA1, PA1, PA2, PA3 (TBD) (1 PA repeated)</th><th>4 x 565 (1 PA repeated)</th><th>Wide & Deep</th></z(hα)<1.74<>	PA1, PA1, PA2, PA3 (TBD) (1 PA repeated)	4 x 565 (1 PA repeated)	Wide & Deep

The discussion of choice of grisms

- Removal of the blue grism eliminates the possibility to detect ANG at z> 8 from Lyman alpha emission and to detect the Balmer and D4000 break at 1.75<z<2.12
- New limits on the red grism do not permit to measure 1.74< Hα emission <2.05, where ground-based observations are impossible due to the poor atmospheric transmission

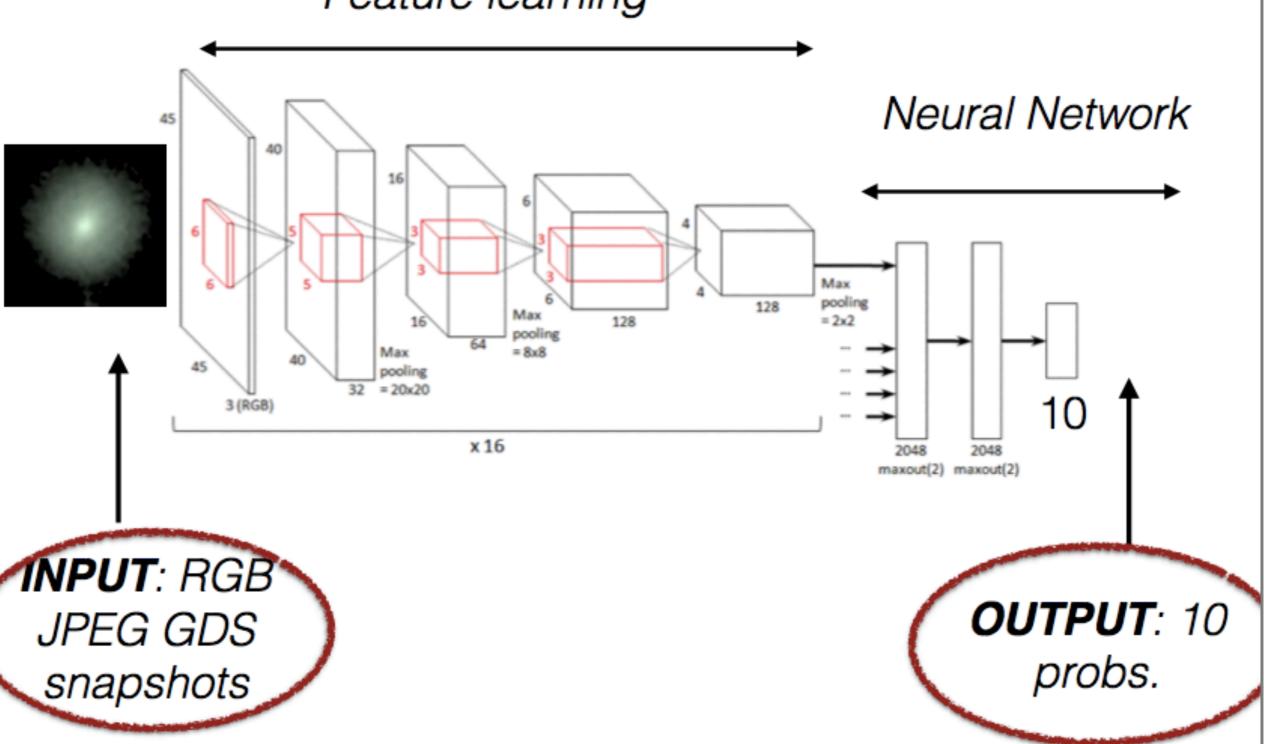
The discussion of choice of grisms

GRISM	Desirable wavelength Range	Resolution	Main scientific cases (Deep Survey)	Notes
Blue	0.92 – 1.25 μm	TBD	Evolution of star-forming galaxies and AGNs, evolution of quiescent galaxies, rarest Lyα emitters and QSOs at z>6.6, cool stars, brown dwarfs, SNe. Crosschecks with LRG clustering.	Detailed E2E simulations required. Optimal definition of the spectral range and overlap with red grism TBD
Red	1.25 – 2.0 μm	As in SRD	Same as above for the Legacy Science. General competitiveness with ground-based spectroscopic surveys. Unique role at 1.5 <z<2 desi.="" discovery="" larger="" space.<="" th="" w.r.t.=""><th>The impact of the extension of the blue-cutoff to 1.2 µm and/or of the red cut-off to 2 µm on core science should be investigated with E2E simulations</th></z<2>	The impact of the extension of the blue-cutoff to 1.2 µm and/or of the red cut-off to 2 µm on core science should be investigated with E2E simulations

WG Scientific progresses

SWG Local Universe and Galaxies

- Very large samples → distribution functions
- Very large volume → Rare sources, probing the extremes
- Exquisite imaging → morphological studies, mergers, strong galaxy-scale lenses, ..
- Weak lensing → Galaxy evolution as a function of halo properties, galaxy alignment, ...

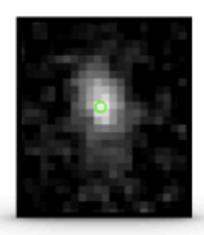

WG Morphology Resp: Pierre-Alain Duc & Chris Conselice

- Automated classification only for Euclid
- Which automated? Classical methods (CAS etc) are able to reproduce visual at ~20%, search for automated classification which can do better
- "Visual" automated classification method succefully tested on Galaxy Zoo and extended to the CANDELS survey by Marc Huertas-Company: it reproduces visual at~0.2%
- Impact on the Euclid pipeline training required working group just started to discuss this

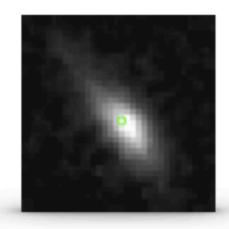
CONVNET for CANDELS

- TRAIN: ~50.000 redundant galaxies in GDS (~10 days)
- CLASSIFY: GDN, COSMOS, UDS, GDS (~8h/field)

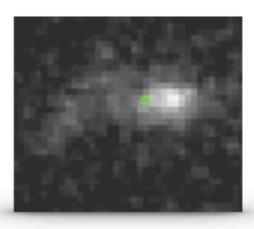
Feature learning


Courtesy Marc Huertas-Company

Catastrophic "errors"


 $fsph_v > 0.7$ and $fsph_a < 0.3$ or $fsph_v < 0.3$ and $fsph_a < 0.7$

~15/8000=0.2%


with respect to the CANDELS Kartaltepe et al. 2014

fsph=0.82 / 0.25 fdisk = 0.5 / 0.76firr = 0.0 / 0.22

fsph=0.8 / 0.25 fdisk = 0.75 / 0.95firr = 0.0 / 0.0

fsph=0.76 / 0.11 fdisk = 0.6 / 0.66firr = 0.39 / 0.53

VISUAL / AUTO

Courtesy Marc Huertas-Company

Application to EUCLID

- Working with EUCLID VIS emulated images on GOODS-S, COSMOS and UDS
- Training set being currently built
- First estimates, required mag cut I < 22.5 given the EUCLID expected depth
 - —> Morphologies for a significant fraction of objects up to z<1.5 (TBC)
 - Possible Prior/Input for WL and/or PHZ??

Courtesy Marc Huertas-Company